MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sum0 Structured version   Visualization version   GIF version

Theorem sum0 15066
Description: Any sum over the empty set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Mario Carneiro, 20-Apr-2014.)
Assertion
Ref Expression
sum0 Σ𝑘 ∈ ∅ 𝐴 = 0

Proof of Theorem sum0
StepHypRef Expression
1 nnuz 12269 . . . 4 ℕ = (ℤ‘1)
2 1z 12000 . . . . 5 1 ∈ ℤ
32a1i 11 . . . 4 (⊤ → 1 ∈ ℤ)
4 0ss 4347 . . . . 5 ∅ ⊆ ℕ
54a1i 11 . . . 4 (⊤ → ∅ ⊆ ℕ)
6 simpr 485 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
76, 1eleqtrdi 2920 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
8 c0ex 10623 . . . . . . 7 0 ∈ V
98fvconst2 6958 . . . . . 6 (𝑘 ∈ (ℤ‘1) → (((ℤ‘1) × {0})‘𝑘) = 0)
107, 9syl 17 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℤ‘1) × {0})‘𝑘) = 0)
11 noel 4293 . . . . . 6 ¬ 𝑘 ∈ ∅
1211iffalsei 4473 . . . . 5 if(𝑘 ∈ ∅, 𝐴, 0) = 0
1310, 12syl6eqr 2871 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℤ‘1) × {0})‘𝑘) = if(𝑘 ∈ ∅, 𝐴, 0))
1411pm2.21i 119 . . . . 5 (𝑘 ∈ ∅ → 𝐴 ∈ ℂ)
1514adantl 482 . . . 4 ((⊤ ∧ 𝑘 ∈ ∅) → 𝐴 ∈ ℂ)
161, 3, 5, 13, 15zsum 15063 . . 3 (⊤ → Σ𝑘 ∈ ∅ 𝐴 = ( ⇝ ‘seq1( + , ((ℤ‘1) × {0}))))
1716mptru 1535 . 2 Σ𝑘 ∈ ∅ 𝐴 = ( ⇝ ‘seq1( + , ((ℤ‘1) × {0})))
18 fclim 14898 . . . 4 ⇝ :dom ⇝ ⟶ℂ
19 ffun 6510 . . . 4 ( ⇝ :dom ⇝ ⟶ℂ → Fun ⇝ )
2018, 19ax-mp 5 . . 3 Fun ⇝
21 serclim0 14922 . . . 4 (1 ∈ ℤ → seq1( + , ((ℤ‘1) × {0})) ⇝ 0)
222, 21ax-mp 5 . . 3 seq1( + , ((ℤ‘1) × {0})) ⇝ 0
23 funbrfv 6709 . . 3 (Fun ⇝ → (seq1( + , ((ℤ‘1) × {0})) ⇝ 0 → ( ⇝ ‘seq1( + , ((ℤ‘1) × {0}))) = 0))
2420, 22, 23mp2 9 . 2 ( ⇝ ‘seq1( + , ((ℤ‘1) × {0}))) = 0
2517, 24eqtri 2841 1 Σ𝑘 ∈ ∅ 𝐴 = 0
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1528  wtru 1529  wcel 2105  wss 3933  c0 4288  ifcif 4463  {csn 4557   class class class wbr 5057   × cxp 5546  dom cdm 5548  Fun wfun 6342  wf 6344  cfv 6348  cc 10523  0cc0 10525  1c1 10526   + caddc 10528  cn 11626  cz 11969  cuz 12231  seqcseq 13357  cli 14829  Σcsu 15030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12881  df-fzo 13022  df-seq 13358  df-exp 13418  df-hash 13679  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-clim 14833  df-sum 15031
This theorem is referenced by:  sumz  15067  fsumf1o  15068  fsumcllem  15077  fsumadd  15084  fsum2d  15114  fsumrev2  15125  fsummulc2  15127  fsumconst  15133  modfsummod  15137  fsumabs  15144  telfsumo  15145  fsumparts  15149  fsumrelem  15150  fsumrlim  15154  fsumo1  15155  fsumiun  15164  isumsplit  15183  arisum  15203  arisum2  15204  pwdif  15211  bpoly0  15392  sumeven  15726  sumodd  15727  bitsinv1  15779  bitsinvp1  15786  prmreclem4  16243  prmreclem5  16244  gsumfsum  20540  fsumcn  23405  ovolfiniun  24029  volfiniun  24075  itg10  24216  itgfsum  24354  dvmptfsum  24499  abelthlem6  24951  logfac  25111  log2ublem3  25453  harmonicbnd3  25512  cht1  25669  dchrisumlem1  25992  dchrisumlem3  25994  logdivbnd  26059  pntrsumbnd2  26070  pntrlog2bndlem4  26083  finsumvtxdg2size  27259  esumpcvgval  31236  signsvf0  31749  signsvf1  31750  repr0  31781  breprexplemc  31802  tgoldbachgtda  31831  mettrifi  34913  rrncmslem  34991  mccl  41755  dvmptfprod  42106  dvnprodlem3  42109  sge0rnn0  42527  sge00  42535  sge0sn  42538
  Copyright terms: Public domain W3C validator