MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumeq1 Structured version   Visualization version   GIF version

Theorem sumeq1 15047
Description: Equality theorem for a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
Assertion
Ref Expression
sumeq1 (𝐴 = 𝐵 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)

Proof of Theorem sumeq1
Dummy variables 𝑓 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3994 . . . . . 6 (𝐴 = 𝐵 → (𝐴 ⊆ (ℤ𝑚) ↔ 𝐵 ⊆ (ℤ𝑚)))
2 simpl 485 . . . . . . . . . . 11 ((𝐴 = 𝐵𝑛 ∈ ℤ) → 𝐴 = 𝐵)
32eleq2d 2900 . . . . . . . . . 10 ((𝐴 = 𝐵𝑛 ∈ ℤ) → (𝑛𝐴𝑛𝐵))
43ifbid 4491 . . . . . . . . 9 ((𝐴 = 𝐵𝑛 ∈ ℤ) → if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0) = if(𝑛𝐵, 𝑛 / 𝑘𝐶, 0))
54mpteq2dva 5163 . . . . . . . 8 (𝐴 = 𝐵 → (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0)) = (𝑛 ∈ ℤ ↦ if(𝑛𝐵, 𝑛 / 𝑘𝐶, 0)))
65seqeq3d 13380 . . . . . . 7 (𝐴 = 𝐵 → seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) = seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐵, 𝑛 / 𝑘𝐶, 0))))
76breq1d 5078 . . . . . 6 (𝐴 = 𝐵 → (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥 ↔ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐵, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥))
81, 7anbi12d 632 . . . . 5 (𝐴 = 𝐵 → ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ↔ (𝐵 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐵, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥)))
98rexbidv 3299 . . . 4 (𝐴 = 𝐵 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐵, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥)))
10 f1oeq3 6608 . . . . . . 7 (𝐴 = 𝐵 → (𝑓:(1...𝑚)–1-1-onto𝐴𝑓:(1...𝑚)–1-1-onto𝐵))
1110anbi1d 631 . . . . . 6 (𝐴 = 𝐵 → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
1211exbidv 1922 . . . . 5 (𝐴 = 𝐵 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
1312rexbidv 3299 . . . 4 (𝐴 = 𝐵 → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
149, 13orbi12d 915 . . 3 (𝐴 = 𝐵 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐵, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)))))
1514iotabidv 6341 . 2 (𝐴 = 𝐵 → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)))) = (℩𝑥(∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐵, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)))))
16 df-sum 15045 . 2 Σ𝑘𝐴 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
17 df-sum 15045 . 2 Σ𝑘𝐵 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐵, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
1815, 16, 173eqtr4g 2883 1 (𝐴 = 𝐵 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843   = wceq 1537  wex 1780  wcel 2114  wrex 3141  csb 3885  wss 3938  ifcif 4469   class class class wbr 5068  cmpt 5148  cio 6314  1-1-ontowf1o 6356  cfv 6357  (class class class)co 7158  0cc0 10539  1c1 10540   + caddc 10542  cn 11640  cz 11984  cuz 12246  ...cfz 12895  seqcseq 13372  cli 14843  Σcsu 15044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-xp 5563  df-cnv 5565  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-iota 6316  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-seq 13373  df-sum 15045
This theorem is referenced by:  sumeq1i  15057  sumeq1d  15060  sumz  15081  fsumadd  15098  fsum2d  15128  fsumrev2  15139  fsummulc2  15141  fsumconst  15147  modfsummods  15150  modfsummod  15151  fsumabs  15158  fsumrelem  15164  fsumrlim  15168  fsumo1  15169  fsumiun  15178  sumeven  15740  sumodd  15741  bitsinv2  15794  bitsf1ocnv  15795  bitsinv  15799  prmreclem5  16258  gsumfsum  20614  fsumcn  23480  ovolfiniun  24104  volfiniun  24150  itgfsum  24429  dvmptfsum  24574  pntrsumbnd2  26145  finsumvtxdg2size  27334  esumpcvgval  31339  esumcvg  31347  rrnval  35107  mccl  41886  dvmptfprod  42237  dvnprodlem1  42238  dvnprodlem2  42239  dvnprodlem3  42240  dvnprod  42241  sge0rnn0  42657  sge00  42665  fsumlesge0  42666  sge0sn  42668  sge0cl  42670  sge0f1o  42671  sge0resplit  42695  sge0xaddlem1  42722  sge0xaddlem2  42723  sge0reuz  42736
  Copyright terms: Public domain W3C validator