MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumodd Structured version   Visualization version   GIF version

Theorem sumodd 15035
Description: If every term in a sum is odd, then the sum is even iff the number of terms in the sum is even. (Contributed by AV, 14-Aug-2021.)
Hypotheses
Ref Expression
sumeven.a (𝜑𝐴 ∈ Fin)
sumeven.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℤ)
sumodd.o ((𝜑𝑘𝐴) → ¬ 2 ∥ 𝐵)
Assertion
Ref Expression
sumodd (𝜑 → (2 ∥ (#‘𝐴) ↔ 2 ∥ Σ𝑘𝐴 𝐵))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem sumodd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6148 . . . . 5 (𝑥 = ∅ → (#‘𝑥) = (#‘∅))
2 hash0 13098 . . . . 5 (#‘∅) = 0
31, 2syl6eq 2671 . . . 4 (𝑥 = ∅ → (#‘𝑥) = 0)
43breq2d 4625 . . 3 (𝑥 = ∅ → (2 ∥ (#‘𝑥) ↔ 2 ∥ 0))
5 sumeq1 14353 . . . . 5 (𝑥 = ∅ → Σ𝑘𝑥 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
6 sum0 14385 . . . . 5 Σ𝑘 ∈ ∅ 𝐵 = 0
75, 6syl6eq 2671 . . . 4 (𝑥 = ∅ → Σ𝑘𝑥 𝐵 = 0)
87breq2d 4625 . . 3 (𝑥 = ∅ → (2 ∥ Σ𝑘𝑥 𝐵 ↔ 2 ∥ 0))
94, 8bibi12d 335 . 2 (𝑥 = ∅ → ((2 ∥ (#‘𝑥) ↔ 2 ∥ Σ𝑘𝑥 𝐵) ↔ (2 ∥ 0 ↔ 2 ∥ 0)))
10 fveq2 6148 . . . 4 (𝑥 = 𝑦 → (#‘𝑥) = (#‘𝑦))
1110breq2d 4625 . . 3 (𝑥 = 𝑦 → (2 ∥ (#‘𝑥) ↔ 2 ∥ (#‘𝑦)))
12 sumeq1 14353 . . . 4 (𝑥 = 𝑦 → Σ𝑘𝑥 𝐵 = Σ𝑘𝑦 𝐵)
1312breq2d 4625 . . 3 (𝑥 = 𝑦 → (2 ∥ Σ𝑘𝑥 𝐵 ↔ 2 ∥ Σ𝑘𝑦 𝐵))
1411, 13bibi12d 335 . 2 (𝑥 = 𝑦 → ((2 ∥ (#‘𝑥) ↔ 2 ∥ Σ𝑘𝑥 𝐵) ↔ (2 ∥ (#‘𝑦) ↔ 2 ∥ Σ𝑘𝑦 𝐵)))
15 fveq2 6148 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → (#‘𝑥) = (#‘(𝑦 ∪ {𝑧})))
1615breq2d 4625 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → (2 ∥ (#‘𝑥) ↔ 2 ∥ (#‘(𝑦 ∪ {𝑧}))))
17 sumeq1 14353 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → Σ𝑘𝑥 𝐵 = Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
1817breq2d 4625 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → (2 ∥ Σ𝑘𝑥 𝐵 ↔ 2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵))
1916, 18bibi12d 335 . 2 (𝑥 = (𝑦 ∪ {𝑧}) → ((2 ∥ (#‘𝑥) ↔ 2 ∥ Σ𝑘𝑥 𝐵) ↔ (2 ∥ (#‘(𝑦 ∪ {𝑧})) ↔ 2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)))
20 fveq2 6148 . . . 4 (𝑥 = 𝐴 → (#‘𝑥) = (#‘𝐴))
2120breq2d 4625 . . 3 (𝑥 = 𝐴 → (2 ∥ (#‘𝑥) ↔ 2 ∥ (#‘𝐴)))
22 sumeq1 14353 . . . 4 (𝑥 = 𝐴 → Σ𝑘𝑥 𝐵 = Σ𝑘𝐴 𝐵)
2322breq2d 4625 . . 3 (𝑥 = 𝐴 → (2 ∥ Σ𝑘𝑥 𝐵 ↔ 2 ∥ Σ𝑘𝐴 𝐵))
2421, 23bibi12d 335 . 2 (𝑥 = 𝐴 → ((2 ∥ (#‘𝑥) ↔ 2 ∥ Σ𝑘𝑥 𝐵) ↔ (2 ∥ (#‘𝐴) ↔ 2 ∥ Σ𝑘𝐴 𝐵)))
25 biidd 252 . 2 (𝜑 → (2 ∥ 0 ↔ 2 ∥ 0))
26 eldifi 3710 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝐴𝑦) → 𝑧𝐴)
2726adantl 482 . . . . . . . . . . . . 13 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑧𝐴)
2827adantl 482 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧𝐴)
29 sumeven.b . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 𝐵 ∈ ℤ)
3029adantlr 750 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝐴) → 𝐵 ∈ ℤ)
3130ralrimiva 2960 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∀𝑘𝐴 𝐵 ∈ ℤ)
32 rspcsbela 3978 . . . . . . . . . . . 12 ((𝑧𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → 𝑧 / 𝑘𝐵 ∈ ℤ)
3328, 31, 32syl2anc 692 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 ∈ ℤ)
34 sumodd.o . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → ¬ 2 ∥ 𝐵)
3534ralrimiva 2960 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑘𝐴 ¬ 2 ∥ 𝐵)
36 nfcv 2761 . . . . . . . . . . . . . . . . . 18 𝑘2
37 nfcv 2761 . . . . . . . . . . . . . . . . . 18 𝑘
38 nfcsb1v 3530 . . . . . . . . . . . . . . . . . 18 𝑘𝑧 / 𝑘𝐵
3936, 37, 38nfbr 4659 . . . . . . . . . . . . . . . . 17 𝑘2 ∥ 𝑧 / 𝑘𝐵
4039nfn 1781 . . . . . . . . . . . . . . . 16 𝑘 ¬ 2 ∥ 𝑧 / 𝑘𝐵
41 csbeq1a 3523 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑧𝐵 = 𝑧 / 𝑘𝐵)
4241breq2d 4625 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑧 → (2 ∥ 𝐵 ↔ 2 ∥ 𝑧 / 𝑘𝐵))
4342notbid 308 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑧 → (¬ 2 ∥ 𝐵 ↔ ¬ 2 ∥ 𝑧 / 𝑘𝐵))
4440, 43rspc 3289 . . . . . . . . . . . . . . 15 (𝑧𝐴 → (∀𝑘𝐴 ¬ 2 ∥ 𝐵 → ¬ 2 ∥ 𝑧 / 𝑘𝐵))
4526, 44syl 17 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝐴𝑦) → (∀𝑘𝐴 ¬ 2 ∥ 𝐵 → ¬ 2 ∥ 𝑧 / 𝑘𝐵))
4635, 45syl5com 31 . . . . . . . . . . . . 13 (𝜑 → (𝑧 ∈ (𝐴𝑦) → ¬ 2 ∥ 𝑧 / 𝑘𝐵))
4746a1d 25 . . . . . . . . . . . 12 (𝜑 → (𝑦𝐴 → (𝑧 ∈ (𝐴𝑦) → ¬ 2 ∥ 𝑧 / 𝑘𝐵)))
4847imp32 449 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ¬ 2 ∥ 𝑧 / 𝑘𝐵)
4933, 48jca 554 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑧 / 𝑘𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝑧 / 𝑘𝐵))
5049adantr 481 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → (𝑧 / 𝑘𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝑧 / 𝑘𝐵))
51 sumeven.a . . . . . . . . . . . . 13 (𝜑𝐴 ∈ Fin)
52 ssfi 8124 . . . . . . . . . . . . . . 15 ((𝐴 ∈ Fin ∧ 𝑦𝐴) → 𝑦 ∈ Fin)
5352expcom 451 . . . . . . . . . . . . . 14 (𝑦𝐴 → (𝐴 ∈ Fin → 𝑦 ∈ Fin))
5453adantr 481 . . . . . . . . . . . . 13 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → (𝐴 ∈ Fin → 𝑦 ∈ Fin))
5551, 54syl5com 31 . . . . . . . . . . . 12 (𝜑 → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑦 ∈ Fin))
5655imp 445 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑦 ∈ Fin)
57 simpll 789 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝜑)
58 ssel 3577 . . . . . . . . . . . . . . 15 (𝑦𝐴 → (𝑘𝑦𝑘𝐴))
5958adantr 481 . . . . . . . . . . . . . 14 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → (𝑘𝑦𝑘𝐴))
6059adantl 482 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑘𝑦𝑘𝐴))
6160imp 445 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑘𝐴)
6257, 61, 29syl2anc 692 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℤ)
6356, 62fsumzcl 14399 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → Σ𝑘𝑦 𝐵 ∈ ℤ)
6463anim1i 591 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → (Σ𝑘𝑦 𝐵 ∈ ℤ ∧ 2 ∥ Σ𝑘𝑦 𝐵))
65 opeo 15013 . . . . . . . . 9 (((𝑧 / 𝑘𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝑧 / 𝑘𝐵) ∧ (Σ𝑘𝑦 𝐵 ∈ ℤ ∧ 2 ∥ Σ𝑘𝑦 𝐵)) → ¬ 2 ∥ (𝑧 / 𝑘𝐵 + Σ𝑘𝑦 𝐵))
6650, 64, 65syl2anc 692 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → ¬ 2 ∥ (𝑧 / 𝑘𝐵 + Σ𝑘𝑦 𝐵))
6763zcnd 11427 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → Σ𝑘𝑦 𝐵 ∈ ℂ)
6833zcnd 11427 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 ∈ ℂ)
69 addcom 10166 . . . . . . . . . . . 12 ((Σ𝑘𝑦 𝐵 ∈ ℂ ∧ 𝑧 / 𝑘𝐵 ∈ ℂ) → (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) = (𝑧 / 𝑘𝐵 + Σ𝑘𝑦 𝐵))
7069breq2d 4625 . . . . . . . . . . 11 ((Σ𝑘𝑦 𝐵 ∈ ℂ ∧ 𝑧 / 𝑘𝐵 ∈ ℂ) → (2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) ↔ 2 ∥ (𝑧 / 𝑘𝐵 + Σ𝑘𝑦 𝐵)))
7170notbid 308 . . . . . . . . . 10 ((Σ𝑘𝑦 𝐵 ∈ ℂ ∧ 𝑧 / 𝑘𝐵 ∈ ℂ) → (¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) ↔ ¬ 2 ∥ (𝑧 / 𝑘𝐵 + Σ𝑘𝑦 𝐵)))
7267, 68, 71syl2anc 692 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) ↔ ¬ 2 ∥ (𝑧 / 𝑘𝐵 + Σ𝑘𝑦 𝐵)))
7372adantr 481 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → (¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) ↔ ¬ 2 ∥ (𝑧 / 𝑘𝐵 + Σ𝑘𝑦 𝐵)))
7466, 73mpbird 247 . . . . . . 7 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → ¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
7574ex 450 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (2 ∥ Σ𝑘𝑦 𝐵 → ¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)))
7663anim1i 591 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ¬ 2 ∥ Σ𝑘𝑦 𝐵) → (Σ𝑘𝑦 𝐵 ∈ ℤ ∧ ¬ 2 ∥ Σ𝑘𝑦 𝐵))
7749adantr 481 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ¬ 2 ∥ Σ𝑘𝑦 𝐵) → (𝑧 / 𝑘𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝑧 / 𝑘𝐵))
78 opoe 15011 . . . . . . . . 9 (((Σ𝑘𝑦 𝐵 ∈ ℤ ∧ ¬ 2 ∥ Σ𝑘𝑦 𝐵) ∧ (𝑧 / 𝑘𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝑧 / 𝑘𝐵)) → 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
7976, 77, 78syl2anc 692 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ¬ 2 ∥ Σ𝑘𝑦 𝐵) → 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
8079ex 450 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (¬ 2 ∥ Σ𝑘𝑦 𝐵 → 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)))
8180con1d 139 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) → 2 ∥ Σ𝑘𝑦 𝐵))
8275, 81impbid 202 . . . . 5 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (2 ∥ Σ𝑘𝑦 𝐵 ↔ ¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)))
83 bitr3 342 . . . . 5 ((2 ∥ Σ𝑘𝑦 𝐵 ↔ ¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)) → ((2 ∥ Σ𝑘𝑦 𝐵 ↔ ¬ 2 ∥ ((#‘𝑦) + 1)) → (¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) ↔ ¬ 2 ∥ ((#‘𝑦) + 1))))
8482, 83syl 17 . . . 4 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((2 ∥ Σ𝑘𝑦 𝐵 ↔ ¬ 2 ∥ ((#‘𝑦) + 1)) → (¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) ↔ ¬ 2 ∥ ((#‘𝑦) + 1))))
85 bicom 212 . . . 4 ((¬ 2 ∥ ((#‘𝑦) + 1) ↔ 2 ∥ Σ𝑘𝑦 𝐵) ↔ (2 ∥ Σ𝑘𝑦 𝐵 ↔ ¬ 2 ∥ ((#‘𝑦) + 1)))
86 bicom 212 . . . 4 ((¬ 2 ∥ ((#‘𝑦) + 1) ↔ ¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)) ↔ (¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) ↔ ¬ 2 ∥ ((#‘𝑦) + 1)))
8784, 85, 863imtr4g 285 . . 3 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((¬ 2 ∥ ((#‘𝑦) + 1) ↔ 2 ∥ Σ𝑘𝑦 𝐵) → (¬ 2 ∥ ((#‘𝑦) + 1) ↔ ¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))))
88 notnotb 304 . . . . 5 (2 ∥ (#‘𝑦) ↔ ¬ ¬ 2 ∥ (#‘𝑦))
89 hashcl 13087 . . . . . . . . 9 (𝑦 ∈ Fin → (#‘𝑦) ∈ ℕ0)
9056, 89syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (#‘𝑦) ∈ ℕ0)
9190nn0zd 11424 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (#‘𝑦) ∈ ℤ)
92 oddp1even 14992 . . . . . . 7 ((#‘𝑦) ∈ ℤ → (¬ 2 ∥ (#‘𝑦) ↔ 2 ∥ ((#‘𝑦) + 1)))
9391, 92syl 17 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (¬ 2 ∥ (#‘𝑦) ↔ 2 ∥ ((#‘𝑦) + 1)))
9493notbid 308 . . . . 5 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (¬ ¬ 2 ∥ (#‘𝑦) ↔ ¬ 2 ∥ ((#‘𝑦) + 1)))
9588, 94syl5bb 272 . . . 4 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (2 ∥ (#‘𝑦) ↔ ¬ 2 ∥ ((#‘𝑦) + 1)))
9695bibi1d 333 . . 3 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((2 ∥ (#‘𝑦) ↔ 2 ∥ Σ𝑘𝑦 𝐵) ↔ (¬ 2 ∥ ((#‘𝑦) + 1) ↔ 2 ∥ Σ𝑘𝑦 𝐵)))
97 simprr 795 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ (𝐴𝑦))
98 eldifn 3711 . . . . . . . . . 10 (𝑧 ∈ (𝐴𝑦) → ¬ 𝑧𝑦)
9998adantl 482 . . . . . . . . 9 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → ¬ 𝑧𝑦)
10099adantl 482 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ¬ 𝑧𝑦)
10156, 100jca 554 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦))
102 hashunsng 13121 . . . . . . 7 (𝑧 ∈ (𝐴𝑦) → ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (#‘(𝑦 ∪ {𝑧})) = ((#‘𝑦) + 1)))
10397, 101, 102sylc 65 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (#‘(𝑦 ∪ {𝑧})) = ((#‘𝑦) + 1))
104103breq2d 4625 . . . . 5 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (2 ∥ (#‘(𝑦 ∪ {𝑧})) ↔ 2 ∥ ((#‘𝑦) + 1)))
105 df-nel 2894 . . . . . . . 8 (𝑧𝑦 ↔ ¬ 𝑧𝑦)
106100, 105sylibr 224 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧𝑦)
107 simpll 789 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝜑)
108 elun 3731 . . . . . . . . . . . . 13 (𝑘 ∈ (𝑦 ∪ {𝑧}) ↔ (𝑘𝑦𝑘 ∈ {𝑧}))
10959com12 32 . . . . . . . . . . . . . 14 (𝑘𝑦 → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑘𝐴))
110 elsni 4165 . . . . . . . . . . . . . . 15 (𝑘 ∈ {𝑧} → 𝑘 = 𝑧)
111 eleq1 2686 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑧 → (𝑘𝐴𝑧𝐴))
11227, 111syl5ibr 236 . . . . . . . . . . . . . . 15 (𝑘 = 𝑧 → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑘𝐴))
113110, 112syl 17 . . . . . . . . . . . . . 14 (𝑘 ∈ {𝑧} → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑘𝐴))
114109, 113jaoi 394 . . . . . . . . . . . . 13 ((𝑘𝑦𝑘 ∈ {𝑧}) → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑘𝐴))
115108, 114sylbi 207 . . . . . . . . . . . 12 (𝑘 ∈ (𝑦 ∪ {𝑧}) → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑘𝐴))
116115com12 32 . . . . . . . . . . 11 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → (𝑘 ∈ (𝑦 ∪ {𝑧}) → 𝑘𝐴))
117116adantl 482 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑘 ∈ (𝑦 ∪ {𝑧}) → 𝑘𝐴))
118117imp 445 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝑘𝐴)
119107, 118, 29syl2anc 692 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝐵 ∈ ℤ)
120119ralrimiva 2960 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ)
121 fsumsplitsnun 14414 . . . . . . 7 ((𝑦 ∈ Fin ∧ 𝑧𝑦 ∧ ∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
12256, 106, 120, 121syl3anc 1323 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
123122breq2d 4625 . . . . 5 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ↔ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)))
124104, 123bibi12d 335 . . . 4 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((2 ∥ (#‘(𝑦 ∪ {𝑧})) ↔ 2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ↔ (2 ∥ ((#‘𝑦) + 1) ↔ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))))
125 notbi 309 . . . 4 ((2 ∥ ((#‘𝑦) + 1) ↔ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)) ↔ (¬ 2 ∥ ((#‘𝑦) + 1) ↔ ¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)))
126124, 125syl6bb 276 . . 3 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((2 ∥ (#‘(𝑦 ∪ {𝑧})) ↔ 2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ↔ (¬ 2 ∥ ((#‘𝑦) + 1) ↔ ¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))))
12787, 96, 1263imtr4d 283 . 2 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((2 ∥ (#‘𝑦) ↔ 2 ∥ Σ𝑘𝑦 𝐵) → (2 ∥ (#‘(𝑦 ∪ {𝑧})) ↔ 2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)))
1289, 14, 19, 24, 25, 127, 51findcard2d 8146 1 (𝜑 → (2 ∥ (#‘𝐴) ↔ 2 ∥ Σ𝑘𝐴 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1480  wcel 1987  wnel 2893  wral 2907  csb 3514  cdif 3552  cun 3553  wss 3555  c0 3891  {csn 4148   class class class wbr 4613  cfv 5847  (class class class)co 6604  Fincfn 7899  cc 9878  0cc0 9880  1c1 9881   + caddc 9883  2c2 11014  0cn0 11236  cz 11321  #chash 13057  Σcsu 14350  cdvds 14907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-oi 8359  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-fz 12269  df-fzo 12407  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-sum 14351  df-dvds 14908
This theorem is referenced by:  evensumodd  15036  oddsumodd  15037
  Copyright terms: Public domain W3C validator