MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumpr Structured version   Visualization version   GIF version

Theorem sumpr 14458
Description: A sum over a pair is the sum of the elements. (Contributed by Thierry Arnoux, 12-Dec-2016.)
Hypotheses
Ref Expression
sumpr.1 (𝑘 = 𝐴𝐶 = 𝐷)
sumpr.2 (𝑘 = 𝐵𝐶 = 𝐸)
sumpr.3 (𝜑 → (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ))
sumpr.4 (𝜑 → (𝐴𝑉𝐵𝑊))
sumpr.5 (𝜑𝐴𝐵)
Assertion
Ref Expression
sumpr (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 + 𝐸))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝐷,𝑘   𝑘,𝐸   𝜑,𝑘   𝑘,𝑉   𝑘,𝑊
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem sumpr
StepHypRef Expression
1 sumpr.5 . . . 4 (𝜑𝐴𝐵)
2 disjsn2 4238 . . . 4 (𝐴𝐵 → ({𝐴} ∩ {𝐵}) = ∅)
31, 2syl 17 . . 3 (𝜑 → ({𝐴} ∩ {𝐵}) = ∅)
4 df-pr 4171 . . . 4 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
54a1i 11 . . 3 (𝜑 → {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}))
6 prfi 8220 . . . 4 {𝐴, 𝐵} ∈ Fin
76a1i 11 . . 3 (𝜑 → {𝐴, 𝐵} ∈ Fin)
8 sumpr.3 . . . . 5 (𝜑 → (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ))
9 sumpr.4 . . . . . 6 (𝜑 → (𝐴𝑉𝐵𝑊))
10 sumpr.1 . . . . . . . 8 (𝑘 = 𝐴𝐶 = 𝐷)
1110eleq1d 2684 . . . . . . 7 (𝑘 = 𝐴 → (𝐶 ∈ ℂ ↔ 𝐷 ∈ ℂ))
12 sumpr.2 . . . . . . . 8 (𝑘 = 𝐵𝐶 = 𝐸)
1312eleq1d 2684 . . . . . . 7 (𝑘 = 𝐵 → (𝐶 ∈ ℂ ↔ 𝐸 ∈ ℂ))
1411, 13ralprg 4225 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (∀𝑘 ∈ {𝐴, 𝐵}𝐶 ∈ ℂ ↔ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ)))
159, 14syl 17 . . . . 5 (𝜑 → (∀𝑘 ∈ {𝐴, 𝐵}𝐶 ∈ ℂ ↔ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ)))
168, 15mpbird 247 . . . 4 (𝜑 → ∀𝑘 ∈ {𝐴, 𝐵}𝐶 ∈ ℂ)
1716r19.21bi 2929 . . 3 ((𝜑𝑘 ∈ {𝐴, 𝐵}) → 𝐶 ∈ ℂ)
183, 5, 7, 17fsumsplit 14452 . 2 (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵}𝐶 = (Σ𝑘 ∈ {𝐴}𝐶 + Σ𝑘 ∈ {𝐵}𝐶))
199simpld 475 . . . 4 (𝜑𝐴𝑉)
208simpld 475 . . . 4 (𝜑𝐷 ∈ ℂ)
2110sumsn 14456 . . . 4 ((𝐴𝑉𝐷 ∈ ℂ) → Σ𝑘 ∈ {𝐴}𝐶 = 𝐷)
2219, 20, 21syl2anc 692 . . 3 (𝜑 → Σ𝑘 ∈ {𝐴}𝐶 = 𝐷)
239simprd 479 . . . 4 (𝜑𝐵𝑊)
248simprd 479 . . . 4 (𝜑𝐸 ∈ ℂ)
2512sumsn 14456 . . . 4 ((𝐵𝑊𝐸 ∈ ℂ) → Σ𝑘 ∈ {𝐵}𝐶 = 𝐸)
2623, 24, 25syl2anc 692 . . 3 (𝜑 → Σ𝑘 ∈ {𝐵}𝐶 = 𝐸)
2722, 26oveq12d 6653 . 2 (𝜑 → (Σ𝑘 ∈ {𝐴}𝐶 + Σ𝑘 ∈ {𝐵}𝐶) = (𝐷 + 𝐸))
2818, 27eqtrd 2654 1 (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 + 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1481  wcel 1988  wne 2791  wral 2909  cun 3565  cin 3566  c0 3907  {csn 4168  {cpr 4170  (class class class)co 6635  Fincfn 7940  cc 9919   + caddc 9924  Σcsu 14397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-fal 1487  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-oadd 7549  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-sup 8333  df-oi 8400  df-card 8750  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-n0 11278  df-z 11363  df-uz 11673  df-rp 11818  df-fz 12312  df-fzo 12450  df-seq 12785  df-exp 12844  df-hash 13101  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-clim 14200  df-sum 14398
This theorem is referenced by:  sumtp  14459  sge0pr  40374  nnsum3primes4  41441  nnsum3primesgbe  41445
  Copyright terms: Public domain W3C validator