MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumsplit Structured version   Visualization version   GIF version

Theorem sumsplit 14698
Description: Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
sumsplit.1 𝑍 = (ℤ𝑀)
sumsplit.2 (𝜑𝑀 ∈ ℤ)
sumsplit.3 (𝜑 → (𝐴𝐵) = ∅)
sumsplit.4 (𝜑 → (𝐴𝐵) ⊆ 𝑍)
sumsplit.5 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐶, 0))
sumsplit.6 ((𝜑𝑘𝑍) → (𝐺𝑘) = if(𝑘𝐵, 𝐶, 0))
sumsplit.7 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝐶 ∈ ℂ)
sumsplit.8 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
sumsplit.9 (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
Assertion
Ref Expression
sumsplit (𝜑 → Σ𝑘 ∈ (𝐴𝐵)𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐹   𝑘,𝐺   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem sumsplit
StepHypRef Expression
1 sumsplit.4 . . 3 (𝜑 → (𝐴𝐵) ⊆ 𝑍)
2 sumsplit.7 . . . 4 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝐶 ∈ ℂ)
32ralrimiva 3104 . . 3 (𝜑 → ∀𝑘 ∈ (𝐴𝐵)𝐶 ∈ ℂ)
4 sumsplit.1 . . . . . 6 𝑍 = (ℤ𝑀)
54eqimssi 3800 . . . . 5 𝑍 ⊆ (ℤ𝑀)
65a1i 11 . . . 4 (𝜑𝑍 ⊆ (ℤ𝑀))
76orcd 406 . . 3 (𝜑 → (𝑍 ⊆ (ℤ𝑀) ∨ 𝑍 ∈ Fin))
8 sumss2 14656 . . 3 ((((𝐴𝐵) ⊆ 𝑍 ∧ ∀𝑘 ∈ (𝐴𝐵)𝐶 ∈ ℂ) ∧ (𝑍 ⊆ (ℤ𝑀) ∨ 𝑍 ∈ Fin)) → Σ𝑘 ∈ (𝐴𝐵)𝐶 = Σ𝑘𝑍 if(𝑘 ∈ (𝐴𝐵), 𝐶, 0))
91, 3, 7, 8syl21anc 1476 . 2 (𝜑 → Σ𝑘 ∈ (𝐴𝐵)𝐶 = Σ𝑘𝑍 if(𝑘 ∈ (𝐴𝐵), 𝐶, 0))
10 sumsplit.2 . . . 4 (𝜑𝑀 ∈ ℤ)
11 sumsplit.5 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐶, 0))
12 iftrue 4236 . . . . . . . 8 (𝑘𝐴 → if(𝑘𝐴, 𝐶, 0) = 𝐶)
1312adantl 473 . . . . . . 7 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐶, 0) = 𝐶)
14 elun1 3923 . . . . . . . 8 (𝑘𝐴𝑘 ∈ (𝐴𝐵))
1514, 2sylan2 492 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
1613, 15eqeltrd 2839 . . . . . 6 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐶, 0) ∈ ℂ)
17 iffalse 4239 . . . . . . . 8 𝑘𝐴 → if(𝑘𝐴, 𝐶, 0) = 0)
18 0cn 10224 . . . . . . . 8 0 ∈ ℂ
1917, 18syl6eqel 2847 . . . . . . 7 𝑘𝐴 → if(𝑘𝐴, 𝐶, 0) ∈ ℂ)
2019adantl 473 . . . . . 6 ((𝜑 ∧ ¬ 𝑘𝐴) → if(𝑘𝐴, 𝐶, 0) ∈ ℂ)
2116, 20pm2.61dan 867 . . . . 5 (𝜑 → if(𝑘𝐴, 𝐶, 0) ∈ ℂ)
2221adantr 472 . . . 4 ((𝜑𝑘𝑍) → if(𝑘𝐴, 𝐶, 0) ∈ ℂ)
23 sumsplit.6 . . . 4 ((𝜑𝑘𝑍) → (𝐺𝑘) = if(𝑘𝐵, 𝐶, 0))
24 iftrue 4236 . . . . . . . 8 (𝑘𝐵 → if(𝑘𝐵, 𝐶, 0) = 𝐶)
2524adantl 473 . . . . . . 7 ((𝜑𝑘𝐵) → if(𝑘𝐵, 𝐶, 0) = 𝐶)
26 elun2 3924 . . . . . . . 8 (𝑘𝐵𝑘 ∈ (𝐴𝐵))
2726, 2sylan2 492 . . . . . . 7 ((𝜑𝑘𝐵) → 𝐶 ∈ ℂ)
2825, 27eqeltrd 2839 . . . . . 6 ((𝜑𝑘𝐵) → if(𝑘𝐵, 𝐶, 0) ∈ ℂ)
29 iffalse 4239 . . . . . . . 8 𝑘𝐵 → if(𝑘𝐵, 𝐶, 0) = 0)
3029, 18syl6eqel 2847 . . . . . . 7 𝑘𝐵 → if(𝑘𝐵, 𝐶, 0) ∈ ℂ)
3130adantl 473 . . . . . 6 ((𝜑 ∧ ¬ 𝑘𝐵) → if(𝑘𝐵, 𝐶, 0) ∈ ℂ)
3228, 31pm2.61dan 867 . . . . 5 (𝜑 → if(𝑘𝐵, 𝐶, 0) ∈ ℂ)
3332adantr 472 . . . 4 ((𝜑𝑘𝑍) → if(𝑘𝐵, 𝐶, 0) ∈ ℂ)
34 sumsplit.8 . . . 4 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
35 sumsplit.9 . . . 4 (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
364, 10, 11, 22, 23, 33, 34, 35isumadd 14697 . . 3 (𝜑 → Σ𝑘𝑍 (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (Σ𝑘𝑍 if(𝑘𝐴, 𝐶, 0) + Σ𝑘𝑍 if(𝑘𝐵, 𝐶, 0)))
3715addid1d 10428 . . . . . 6 ((𝜑𝑘𝐴) → (𝐶 + 0) = 𝐶)
38 noel 4062 . . . . . . . . . . 11 ¬ 𝑘 ∈ ∅
39 elin 3939 . . . . . . . . . . . 12 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
40 sumsplit.3 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝐵) = ∅)
4140eleq2d 2825 . . . . . . . . . . . 12 (𝜑 → (𝑘 ∈ (𝐴𝐵) ↔ 𝑘 ∈ ∅))
4239, 41syl5rbbr 275 . . . . . . . . . . 11 (𝜑 → (𝑘 ∈ ∅ ↔ (𝑘𝐴𝑘𝐵)))
4338, 42mtbii 315 . . . . . . . . . 10 (𝜑 → ¬ (𝑘𝐴𝑘𝐵))
44 imnan 437 . . . . . . . . . 10 ((𝑘𝐴 → ¬ 𝑘𝐵) ↔ ¬ (𝑘𝐴𝑘𝐵))
4543, 44sylibr 224 . . . . . . . . 9 (𝜑 → (𝑘𝐴 → ¬ 𝑘𝐵))
4645imp 444 . . . . . . . 8 ((𝜑𝑘𝐴) → ¬ 𝑘𝐵)
4746, 29syl 17 . . . . . . 7 ((𝜑𝑘𝐴) → if(𝑘𝐵, 𝐶, 0) = 0)
4813, 47oveq12d 6831 . . . . . 6 ((𝜑𝑘𝐴) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (𝐶 + 0))
49 iftrue 4236 . . . . . . . 8 (𝑘 ∈ (𝐴𝐵) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = 𝐶)
5014, 49syl 17 . . . . . . 7 (𝑘𝐴 → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = 𝐶)
5150adantl 473 . . . . . 6 ((𝜑𝑘𝐴) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = 𝐶)
5237, 48, 513eqtr4rd 2805 . . . . 5 ((𝜑𝑘𝐴) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)))
5332addid2d 10429 . . . . . . 7 (𝜑 → (0 + if(𝑘𝐵, 𝐶, 0)) = if(𝑘𝐵, 𝐶, 0))
5453adantr 472 . . . . . 6 ((𝜑 ∧ ¬ 𝑘𝐴) → (0 + if(𝑘𝐵, 𝐶, 0)) = if(𝑘𝐵, 𝐶, 0))
5517adantl 473 . . . . . . 7 ((𝜑 ∧ ¬ 𝑘𝐴) → if(𝑘𝐴, 𝐶, 0) = 0)
5655oveq1d 6828 . . . . . 6 ((𝜑 ∧ ¬ 𝑘𝐴) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (0 + if(𝑘𝐵, 𝐶, 0)))
57 biorf 419 . . . . . . . . 9 𝑘𝐴 → (𝑘𝐵 ↔ (𝑘𝐴𝑘𝐵)))
58 elun 3896 . . . . . . . . 9 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
5957, 58syl6rbbr 279 . . . . . . . 8 𝑘𝐴 → (𝑘 ∈ (𝐴𝐵) ↔ 𝑘𝐵))
6059adantl 473 . . . . . . 7 ((𝜑 ∧ ¬ 𝑘𝐴) → (𝑘 ∈ (𝐴𝐵) ↔ 𝑘𝐵))
6160ifbid 4252 . . . . . 6 ((𝜑 ∧ ¬ 𝑘𝐴) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = if(𝑘𝐵, 𝐶, 0))
6254, 56, 613eqtr4rd 2805 . . . . 5 ((𝜑 ∧ ¬ 𝑘𝐴) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)))
6352, 62pm2.61dan 867 . . . 4 (𝜑 → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)))
6463sumeq2sdv 14634 . . 3 (𝜑 → Σ𝑘𝑍 if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = Σ𝑘𝑍 (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)))
651unssad 3933 . . . . 5 (𝜑𝐴𝑍)
6615ralrimiva 3104 . . . . 5 (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℂ)
67 sumss2 14656 . . . . 5 (((𝐴𝑍 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ (𝑍 ⊆ (ℤ𝑀) ∨ 𝑍 ∈ Fin)) → Σ𝑘𝐴 𝐶 = Σ𝑘𝑍 if(𝑘𝐴, 𝐶, 0))
6865, 66, 7, 67syl21anc 1476 . . . 4 (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝑍 if(𝑘𝐴, 𝐶, 0))
691unssbd 3934 . . . . 5 (𝜑𝐵𝑍)
7027ralrimiva 3104 . . . . 5 (𝜑 → ∀𝑘𝐵 𝐶 ∈ ℂ)
71 sumss2 14656 . . . . 5 (((𝐵𝑍 ∧ ∀𝑘𝐵 𝐶 ∈ ℂ) ∧ (𝑍 ⊆ (ℤ𝑀) ∨ 𝑍 ∈ Fin)) → Σ𝑘𝐵 𝐶 = Σ𝑘𝑍 if(𝑘𝐵, 𝐶, 0))
7269, 70, 7, 71syl21anc 1476 . . . 4 (𝜑 → Σ𝑘𝐵 𝐶 = Σ𝑘𝑍 if(𝑘𝐵, 𝐶, 0))
7368, 72oveq12d 6831 . . 3 (𝜑 → (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶) = (Σ𝑘𝑍 if(𝑘𝐴, 𝐶, 0) + Σ𝑘𝑍 if(𝑘𝐵, 𝐶, 0)))
7436, 64, 733eqtr4rd 2805 . 2 (𝜑 → (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶) = Σ𝑘𝑍 if(𝑘 ∈ (𝐴𝐵), 𝐶, 0))
759, 74eqtr4d 2797 1 (𝜑 → Σ𝑘 ∈ (𝐴𝐵)𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383   = wceq 1632  wcel 2139  wral 3050  cun 3713  cin 3714  wss 3715  c0 4058  ifcif 4230  dom cdm 5266  cfv 6049  (class class class)co 6813  Fincfn 8121  cc 10126  0cc0 10128   + caddc 10131  cz 11569  cuz 11879  seqcseq 12995  cli 14414  Σcsu 14615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-sup 8513  df-oi 8580  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-z 11570  df-uz 11880  df-rp 12026  df-fz 12520  df-fzo 12660  df-seq 12996  df-exp 13055  df-hash 13312  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-clim 14418  df-sum 14616
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator