MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumss Structured version   Visualization version   GIF version

Theorem sumss 14499
Description: Change the index set to a subset in an upper integer sum. (Contributed by Mario Carneiro, 21-Apr-2014.)
Hypotheses
Ref Expression
sumss.1 (𝜑𝐴𝐵)
sumss.2 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
sumss.3 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 0)
sumss.4 (𝜑𝐵 ⊆ (ℤ𝑀))
Assertion
Ref Expression
sumss (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝜑,𝑘   𝑘,𝑀
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem sumss
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 eqid 2651 . . . . 5 (ℤ𝑀) = (ℤ𝑀)
2 simpr 476 . . . . 5 ((𝜑𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
3 sumss.1 . . . . . . 7 (𝜑𝐴𝐵)
4 sumss.4 . . . . . . 7 (𝜑𝐵 ⊆ (ℤ𝑀))
53, 4sstrd 3646 . . . . . 6 (𝜑𝐴 ⊆ (ℤ𝑀))
65adantr 480 . . . . 5 ((𝜑𝑀 ∈ ℤ) → 𝐴 ⊆ (ℤ𝑀))
7 nfcv 2793 . . . . . . 7 𝑘𝑚
8 nffvmpt1 6237 . . . . . . . 8 𝑘((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑚)
9 nfv 1883 . . . . . . . . 9 𝑘 𝑚𝐴
10 nffvmpt1 6237 . . . . . . . . 9 𝑘((𝑘𝐴𝐶)‘𝑚)
11 nfcv 2793 . . . . . . . . 9 𝑘0
129, 10, 11nfif 4148 . . . . . . . 8 𝑘if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 0)
138, 12nfeq 2805 . . . . . . 7 𝑘((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑚) = if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 0)
14 fveq2 6229 . . . . . . . 8 (𝑘 = 𝑚 → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑘) = ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑚))
15 eleq1 2718 . . . . . . . . 9 (𝑘 = 𝑚 → (𝑘𝐴𝑚𝐴))
16 fveq2 6229 . . . . . . . . 9 (𝑘 = 𝑚 → ((𝑘𝐴𝐶)‘𝑘) = ((𝑘𝐴𝐶)‘𝑚))
1715, 16ifbieq1d 4142 . . . . . . . 8 (𝑘 = 𝑚 → if(𝑘𝐴, ((𝑘𝐴𝐶)‘𝑘), 0) = if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 0))
1814, 17eqeq12d 2666 . . . . . . 7 (𝑘 = 𝑚 → (((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑘) = if(𝑘𝐴, ((𝑘𝐴𝐶)‘𝑘), 0) ↔ ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑚) = if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 0)))
19 eqid 2651 . . . . . . . . . . 11 (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0)) = (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))
2019fvmpt2i 6329 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑀) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑘) = ( I ‘if(𝑘𝐴, 𝐶, 0)))
21 iftrue 4125 . . . . . . . . . . 11 (𝑘𝐴 → if(𝑘𝐴, 𝐶, 0) = 𝐶)
2221fveq2d 6233 . . . . . . . . . 10 (𝑘𝐴 → ( I ‘if(𝑘𝐴, 𝐶, 0)) = ( I ‘𝐶))
2320, 22sylan9eq 2705 . . . . . . . . 9 ((𝑘 ∈ (ℤ𝑀) ∧ 𝑘𝐴) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑘) = ( I ‘𝐶))
24 iftrue 4125 . . . . . . . . . . 11 (𝑘𝐴 → if(𝑘𝐴, ((𝑘𝐴𝐶)‘𝑘), 0) = ((𝑘𝐴𝐶)‘𝑘))
25 eqid 2651 . . . . . . . . . . . 12 (𝑘𝐴𝐶) = (𝑘𝐴𝐶)
2625fvmpt2i 6329 . . . . . . . . . . 11 (𝑘𝐴 → ((𝑘𝐴𝐶)‘𝑘) = ( I ‘𝐶))
2724, 26eqtrd 2685 . . . . . . . . . 10 (𝑘𝐴 → if(𝑘𝐴, ((𝑘𝐴𝐶)‘𝑘), 0) = ( I ‘𝐶))
2827adantl 481 . . . . . . . . 9 ((𝑘 ∈ (ℤ𝑀) ∧ 𝑘𝐴) → if(𝑘𝐴, ((𝑘𝐴𝐶)‘𝑘), 0) = ( I ‘𝐶))
2923, 28eqtr4d 2688 . . . . . . . 8 ((𝑘 ∈ (ℤ𝑀) ∧ 𝑘𝐴) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑘) = if(𝑘𝐴, ((𝑘𝐴𝐶)‘𝑘), 0))
30 iffalse 4128 . . . . . . . . . . . 12 𝑘𝐴 → if(𝑘𝐴, 𝐶, 0) = 0)
3130fveq2d 6233 . . . . . . . . . . 11 𝑘𝐴 → ( I ‘if(𝑘𝐴, 𝐶, 0)) = ( I ‘0))
32 0z 11426 . . . . . . . . . . . 12 0 ∈ ℤ
33 fvi 6294 . . . . . . . . . . . 12 (0 ∈ ℤ → ( I ‘0) = 0)
3432, 33ax-mp 5 . . . . . . . . . . 11 ( I ‘0) = 0
3531, 34syl6eq 2701 . . . . . . . . . 10 𝑘𝐴 → ( I ‘if(𝑘𝐴, 𝐶, 0)) = 0)
3620, 35sylan9eq 2705 . . . . . . . . 9 ((𝑘 ∈ (ℤ𝑀) ∧ ¬ 𝑘𝐴) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑘) = 0)
37 iffalse 4128 . . . . . . . . . 10 𝑘𝐴 → if(𝑘𝐴, ((𝑘𝐴𝐶)‘𝑘), 0) = 0)
3837adantl 481 . . . . . . . . 9 ((𝑘 ∈ (ℤ𝑀) ∧ ¬ 𝑘𝐴) → if(𝑘𝐴, ((𝑘𝐴𝐶)‘𝑘), 0) = 0)
3936, 38eqtr4d 2688 . . . . . . . 8 ((𝑘 ∈ (ℤ𝑀) ∧ ¬ 𝑘𝐴) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑘) = if(𝑘𝐴, ((𝑘𝐴𝐶)‘𝑘), 0))
4029, 39pm2.61dan 849 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑘) = if(𝑘𝐴, ((𝑘𝐴𝐶)‘𝑘), 0))
417, 13, 18, 40vtoclgaf 3302 . . . . . 6 (𝑚 ∈ (ℤ𝑀) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑚) = if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 0))
4241adantl 481 . . . . 5 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑚) = if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 0))
43 sumss.2 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
4443, 25fmptd 6425 . . . . . . 7 (𝜑 → (𝑘𝐴𝐶):𝐴⟶ℂ)
4544adantr 480 . . . . . 6 ((𝜑𝑀 ∈ ℤ) → (𝑘𝐴𝐶):𝐴⟶ℂ)
4645ffvelrnda 6399 . . . . 5 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐴) → ((𝑘𝐴𝐶)‘𝑚) ∈ ℂ)
471, 2, 6, 42, 46zsum 14493 . . . 4 ((𝜑𝑀 ∈ ℤ) → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ( ⇝ ‘seq𝑀( + , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0)))))
484adantr 480 . . . . 5 ((𝜑𝑀 ∈ ℤ) → 𝐵 ⊆ (ℤ𝑀))
49 nfv 1883 . . . . . . . . 9 𝑘𝜑
50 nfv 1883 . . . . . . . . . . 11 𝑘 𝑚𝐵
51 nffvmpt1 6237 . . . . . . . . . . 11 𝑘((𝑘𝐵𝐶)‘𝑚)
5250, 51, 11nfif 4148 . . . . . . . . . 10 𝑘if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 0)
538, 52nfeq 2805 . . . . . . . . 9 𝑘((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑚) = if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 0)
5449, 53nfim 1865 . . . . . . . 8 𝑘(𝜑 → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑚) = if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 0))
55 eleq1 2718 . . . . . . . . . . 11 (𝑘 = 𝑚 → (𝑘𝐵𝑚𝐵))
56 fveq2 6229 . . . . . . . . . . 11 (𝑘 = 𝑚 → ((𝑘𝐵𝐶)‘𝑘) = ((𝑘𝐵𝐶)‘𝑚))
5755, 56ifbieq1d 4142 . . . . . . . . . 10 (𝑘 = 𝑚 → if(𝑘𝐵, ((𝑘𝐵𝐶)‘𝑘), 0) = if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 0))
5814, 57eqeq12d 2666 . . . . . . . . 9 (𝑘 = 𝑚 → (((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑘) = if(𝑘𝐵, ((𝑘𝐵𝐶)‘𝑘), 0) ↔ ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑚) = if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 0)))
5958imbi2d 329 . . . . . . . 8 (𝑘 = 𝑚 → ((𝜑 → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑘) = if(𝑘𝐵, ((𝑘𝐵𝐶)‘𝑘), 0)) ↔ (𝜑 → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑚) = if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 0))))
6023adantll 750 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ 𝑘𝐴) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑘) = ( I ‘𝐶))
613adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝐴𝐵)
6261sselda 3636 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ 𝑘𝐴) → 𝑘𝐵)
63 iftrue 4125 . . . . . . . . . . . . 13 (𝑘𝐵 → if(𝑘𝐵, ((𝑘𝐵𝐶)‘𝑘), 0) = ((𝑘𝐵𝐶)‘𝑘))
64 eqid 2651 . . . . . . . . . . . . . 14 (𝑘𝐵𝐶) = (𝑘𝐵𝐶)
6564fvmpt2i 6329 . . . . . . . . . . . . 13 (𝑘𝐵 → ((𝑘𝐵𝐶)‘𝑘) = ( I ‘𝐶))
6663, 65eqtrd 2685 . . . . . . . . . . . 12 (𝑘𝐵 → if(𝑘𝐵, ((𝑘𝐵𝐶)‘𝑘), 0) = ( I ‘𝐶))
6762, 66syl 17 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ 𝑘𝐴) → if(𝑘𝐵, ((𝑘𝐵𝐶)‘𝑘), 0) = ( I ‘𝐶))
6860, 67eqtr4d 2688 . . . . . . . . . 10 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ 𝑘𝐴) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑘) = if(𝑘𝐵, ((𝑘𝐵𝐶)‘𝑘), 0))
6936adantll 750 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ ¬ 𝑘𝐴) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑘) = 0)
7066ad2antrl 764 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘𝐵 ∧ ¬ 𝑘𝐴)) → if(𝑘𝐵, ((𝑘𝐵𝐶)‘𝑘), 0) = ( I ‘𝐶))
71 eldif 3617 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (𝐵𝐴) ↔ (𝑘𝐵 ∧ ¬ 𝑘𝐴))
72 sumss.3 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 0)
7372fveq2d 6233 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (𝐵𝐴)) → ( I ‘𝐶) = ( I ‘0))
74 0cn 10070 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℂ
75 fvi 6294 . . . . . . . . . . . . . . . . . . 19 (0 ∈ ℂ → ( I ‘0) = 0)
7674, 75ax-mp 5 . . . . . . . . . . . . . . . . . 18 ( I ‘0) = 0
7773, 76syl6eq 2701 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (𝐵𝐴)) → ( I ‘𝐶) = 0)
7871, 77sylan2br 492 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘𝐵 ∧ ¬ 𝑘𝐴)) → ( I ‘𝐶) = 0)
7970, 78eqtrd 2685 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘𝐵 ∧ ¬ 𝑘𝐴)) → if(𝑘𝐵, ((𝑘𝐵𝐶)‘𝑘), 0) = 0)
8079expr 642 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐵) → (¬ 𝑘𝐴 → if(𝑘𝐵, ((𝑘𝐵𝐶)‘𝑘), 0) = 0))
81 iffalse 4128 . . . . . . . . . . . . . . . 16 𝑘𝐵 → if(𝑘𝐵, ((𝑘𝐵𝐶)‘𝑘), 0) = 0)
8281adantl 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝑘𝐵) → if(𝑘𝐵, ((𝑘𝐵𝐶)‘𝑘), 0) = 0)
8382a1d 25 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝑘𝐵) → (¬ 𝑘𝐴 → if(𝑘𝐵, ((𝑘𝐵𝐶)‘𝑘), 0) = 0))
8480, 83pm2.61dan 849 . . . . . . . . . . . . 13 (𝜑 → (¬ 𝑘𝐴 → if(𝑘𝐵, ((𝑘𝐵𝐶)‘𝑘), 0) = 0))
8584adantr 480 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ𝑀)) → (¬ 𝑘𝐴 → if(𝑘𝐵, ((𝑘𝐵𝐶)‘𝑘), 0) = 0))
8685imp 444 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ ¬ 𝑘𝐴) → if(𝑘𝐵, ((𝑘𝐵𝐶)‘𝑘), 0) = 0)
8769, 86eqtr4d 2688 . . . . . . . . . 10 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ ¬ 𝑘𝐴) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑘) = if(𝑘𝐵, ((𝑘𝐵𝐶)‘𝑘), 0))
8868, 87pm2.61dan 849 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑘) = if(𝑘𝐵, ((𝑘𝐵𝐶)‘𝑘), 0))
8988expcom 450 . . . . . . . 8 (𝑘 ∈ (ℤ𝑀) → (𝜑 → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑘) = if(𝑘𝐵, ((𝑘𝐵𝐶)‘𝑘), 0)))
907, 54, 59, 89vtoclgaf 3302 . . . . . . 7 (𝑚 ∈ (ℤ𝑀) → (𝜑 → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑚) = if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 0)))
9190impcom 445 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑚) = if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 0))
9291adantlr 751 . . . . 5 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑚) = if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 0))
9343ex 449 . . . . . . . . . 10 (𝜑 → (𝑘𝐴𝐶 ∈ ℂ))
9493adantr 480 . . . . . . . . 9 ((𝜑𝑘𝐵) → (𝑘𝐴𝐶 ∈ ℂ))
9572, 74syl6eqel 2738 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 ∈ ℂ)
9671, 95sylan2br 492 . . . . . . . . . 10 ((𝜑 ∧ (𝑘𝐵 ∧ ¬ 𝑘𝐴)) → 𝐶 ∈ ℂ)
9796expr 642 . . . . . . . . 9 ((𝜑𝑘𝐵) → (¬ 𝑘𝐴𝐶 ∈ ℂ))
9894, 97pm2.61d 170 . . . . . . . 8 ((𝜑𝑘𝐵) → 𝐶 ∈ ℂ)
9998, 64fmptd 6425 . . . . . . 7 (𝜑 → (𝑘𝐵𝐶):𝐵⟶ℂ)
10099adantr 480 . . . . . 6 ((𝜑𝑀 ∈ ℤ) → (𝑘𝐵𝐶):𝐵⟶ℂ)
101100ffvelrnda 6399 . . . . 5 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐵) → ((𝑘𝐵𝐶)‘𝑚) ∈ ℂ)
1021, 2, 48, 92, 101zsum 14493 . . . 4 ((𝜑𝑀 ∈ ℤ) → Σ𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = ( ⇝ ‘seq𝑀( + , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0)))))
10347, 102eqtr4d 2688 . . 3 ((𝜑𝑀 ∈ ℤ) → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = Σ𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚))
104 sumfc 14484 . . 3 Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = Σ𝑘𝐴 𝐶
105 sumfc 14484 . . 3 Σ𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = Σ𝑘𝐵 𝐶
106103, 104, 1053eqtr3g 2708 . 2 ((𝜑𝑀 ∈ ℤ) → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
1073adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → 𝐴𝐵)
108 uzf 11728 . . . . . . . . . . . 12 :ℤ⟶𝒫 ℤ
109108fdmi 6090 . . . . . . . . . . 11 dom ℤ = ℤ
110109eleq2i 2722 . . . . . . . . . 10 (𝑀 ∈ dom ℤ𝑀 ∈ ℤ)
111 ndmfv 6256 . . . . . . . . . 10 𝑀 ∈ dom ℤ → (ℤ𝑀) = ∅)
112110, 111sylnbir 320 . . . . . . . . 9 𝑀 ∈ ℤ → (ℤ𝑀) = ∅)
113112sseq2d 3666 . . . . . . . 8 𝑀 ∈ ℤ → (𝐵 ⊆ (ℤ𝑀) ↔ 𝐵 ⊆ ∅))
1144, 113syl5ib 234 . . . . . . 7 𝑀 ∈ ℤ → (𝜑𝐵 ⊆ ∅))
115114impcom 445 . . . . . 6 ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → 𝐵 ⊆ ∅)
116107, 115sstrd 3646 . . . . 5 ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → 𝐴 ⊆ ∅)
117 ss0 4007 . . . . 5 (𝐴 ⊆ ∅ → 𝐴 = ∅)
118116, 117syl 17 . . . 4 ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → 𝐴 = ∅)
119 ss0 4007 . . . . 5 (𝐵 ⊆ ∅ → 𝐵 = ∅)
120115, 119syl 17 . . . 4 ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → 𝐵 = ∅)
121118, 120eqtr4d 2688 . . 3 ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → 𝐴 = 𝐵)
122121sumeq1d 14475 . 2 ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
123106, 122pm2.61dan 849 1 (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1523  wcel 2030  cdif 3604  wss 3607  c0 3948  ifcif 4119  𝒫 cpw 4191  cmpt 4762   I cid 5052  dom cdm 5143  wf 5922  cfv 5926  cc 9972  0cc0 9974   + caddc 9977  cz 11415  cuz 11725  seqcseq 12841  cli 14259  Σcsu 14460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461
This theorem is referenced by:  fsumss  14500  sumss2  14501  binomlem  14605  eulerpartlemsv2  30548  eulerpartlemsv3  30551  eulerpartlemv  30554  eulerpartlemb  30558
  Copyright terms: Public domain W3C validator