MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supaddc Structured version   Visualization version   GIF version

Theorem supaddc 11596
Description: The supremum function distributes over addition in a sense similar to that in supmul1 11598. (Contributed by Brendan Leahy, 25-Sep-2017.)
Hypotheses
Ref Expression
supadd.a1 (𝜑𝐴 ⊆ ℝ)
supadd.a2 (𝜑𝐴 ≠ ∅)
supadd.a3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
supaddc.b (𝜑𝐵 ∈ ℝ)
supaddc.c 𝐶 = {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣 + 𝐵)}
Assertion
Ref Expression
supaddc (𝜑 → (sup(𝐴, ℝ, < ) + 𝐵) = sup(𝐶, ℝ, < ))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑣,𝐴   𝑥,𝐵,𝑦,𝑧,𝑣   𝑥,𝐶   𝜑,𝑧,𝑣
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐶(𝑦,𝑧,𝑣)

Proof of Theorem supaddc
Dummy variables 𝑤 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3495 . . . . . . 7 𝑤 ∈ V
2 oveq1 7152 . . . . . . . . . 10 (𝑣 = 𝑎 → (𝑣 + 𝐵) = (𝑎 + 𝐵))
32eqeq2d 2829 . . . . . . . . 9 (𝑣 = 𝑎 → (𝑧 = (𝑣 + 𝐵) ↔ 𝑧 = (𝑎 + 𝐵)))
43cbvrexvw 3448 . . . . . . . 8 (∃𝑣𝐴 𝑧 = (𝑣 + 𝐵) ↔ ∃𝑎𝐴 𝑧 = (𝑎 + 𝐵))
5 eqeq1 2822 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧 = (𝑎 + 𝐵) ↔ 𝑤 = (𝑎 + 𝐵)))
65rexbidv 3294 . . . . . . . 8 (𝑧 = 𝑤 → (∃𝑎𝐴 𝑧 = (𝑎 + 𝐵) ↔ ∃𝑎𝐴 𝑤 = (𝑎 + 𝐵)))
74, 6syl5bb 284 . . . . . . 7 (𝑧 = 𝑤 → (∃𝑣𝐴 𝑧 = (𝑣 + 𝐵) ↔ ∃𝑎𝐴 𝑤 = (𝑎 + 𝐵)))
8 supaddc.c . . . . . . 7 𝐶 = {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣 + 𝐵)}
91, 7, 8elab2 3667 . . . . . 6 (𝑤𝐶 ↔ ∃𝑎𝐴 𝑤 = (𝑎 + 𝐵))
10 supadd.a1 . . . . . . . . . 10 (𝜑𝐴 ⊆ ℝ)
1110sselda 3964 . . . . . . . . 9 ((𝜑𝑎𝐴) → 𝑎 ∈ ℝ)
12 supadd.a2 . . . . . . . . . . 11 (𝜑𝐴 ≠ ∅)
13 supadd.a3 . . . . . . . . . . 11 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
1410, 12, 13suprcld 11592 . . . . . . . . . 10 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ)
1514adantr 481 . . . . . . . . 9 ((𝜑𝑎𝐴) → sup(𝐴, ℝ, < ) ∈ ℝ)
16 supaddc.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
1716adantr 481 . . . . . . . . 9 ((𝜑𝑎𝐴) → 𝐵 ∈ ℝ)
1810, 12, 133jca 1120 . . . . . . . . . 10 (𝜑 → (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
19 suprub 11590 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝑎𝐴) → 𝑎 ≤ sup(𝐴, ℝ, < ))
2018, 19sylan 580 . . . . . . . . 9 ((𝜑𝑎𝐴) → 𝑎 ≤ sup(𝐴, ℝ, < ))
2111, 15, 17, 20leadd1dd 11242 . . . . . . . 8 ((𝜑𝑎𝐴) → (𝑎 + 𝐵) ≤ (sup(𝐴, ℝ, < ) + 𝐵))
22 breq1 5060 . . . . . . . 8 (𝑤 = (𝑎 + 𝐵) → (𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵) ↔ (𝑎 + 𝐵) ≤ (sup(𝐴, ℝ, < ) + 𝐵)))
2321, 22syl5ibrcom 248 . . . . . . 7 ((𝜑𝑎𝐴) → (𝑤 = (𝑎 + 𝐵) → 𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵)))
2423rexlimdva 3281 . . . . . 6 (𝜑 → (∃𝑎𝐴 𝑤 = (𝑎 + 𝐵) → 𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵)))
259, 24syl5bi 243 . . . . 5 (𝜑 → (𝑤𝐶𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵)))
2625ralrimiv 3178 . . . 4 (𝜑 → ∀𝑤𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵))
2711, 17readdcld 10658 . . . . . . . . 9 ((𝜑𝑎𝐴) → (𝑎 + 𝐵) ∈ ℝ)
28 eleq1a 2905 . . . . . . . . 9 ((𝑎 + 𝐵) ∈ ℝ → (𝑤 = (𝑎 + 𝐵) → 𝑤 ∈ ℝ))
2927, 28syl 17 . . . . . . . 8 ((𝜑𝑎𝐴) → (𝑤 = (𝑎 + 𝐵) → 𝑤 ∈ ℝ))
3029rexlimdva 3281 . . . . . . 7 (𝜑 → (∃𝑎𝐴 𝑤 = (𝑎 + 𝐵) → 𝑤 ∈ ℝ))
319, 30syl5bi 243 . . . . . 6 (𝜑 → (𝑤𝐶𝑤 ∈ ℝ))
3231ssrdv 3970 . . . . 5 (𝜑𝐶 ⊆ ℝ)
33 ovex 7178 . . . . . . . . 9 (𝑎 + 𝐵) ∈ V
3433isseti 3506 . . . . . . . 8 𝑤 𝑤 = (𝑎 + 𝐵)
3534rgenw 3147 . . . . . . 7 𝑎𝐴𝑤 𝑤 = (𝑎 + 𝐵)
36 r19.2z 4436 . . . . . . 7 ((𝐴 ≠ ∅ ∧ ∀𝑎𝐴𝑤 𝑤 = (𝑎 + 𝐵)) → ∃𝑎𝐴𝑤 𝑤 = (𝑎 + 𝐵))
3712, 35, 36sylancl 586 . . . . . 6 (𝜑 → ∃𝑎𝐴𝑤 𝑤 = (𝑎 + 𝐵))
389exbii 1839 . . . . . . 7 (∃𝑤 𝑤𝐶 ↔ ∃𝑤𝑎𝐴 𝑤 = (𝑎 + 𝐵))
39 n0 4307 . . . . . . 7 (𝐶 ≠ ∅ ↔ ∃𝑤 𝑤𝐶)
40 rexcom4 3246 . . . . . . 7 (∃𝑎𝐴𝑤 𝑤 = (𝑎 + 𝐵) ↔ ∃𝑤𝑎𝐴 𝑤 = (𝑎 + 𝐵))
4138, 39, 403bitr4i 304 . . . . . 6 (𝐶 ≠ ∅ ↔ ∃𝑎𝐴𝑤 𝑤 = (𝑎 + 𝐵))
4237, 41sylibr 235 . . . . 5 (𝜑𝐶 ≠ ∅)
4314, 16readdcld 10658 . . . . . 6 (𝜑 → (sup(𝐴, ℝ, < ) + 𝐵) ∈ ℝ)
44 brralrspcev 5117 . . . . . 6 (((sup(𝐴, ℝ, < ) + 𝐵) ∈ ℝ ∧ ∀𝑤𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵)) → ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥)
4543, 26, 44syl2anc 584 . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥)
46 suprleub 11595 . . . . 5 (((𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥) ∧ (sup(𝐴, ℝ, < ) + 𝐵) ∈ ℝ) → (sup(𝐶, ℝ, < ) ≤ (sup(𝐴, ℝ, < ) + 𝐵) ↔ ∀𝑤𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵)))
4732, 42, 45, 43, 46syl31anc 1365 . . . 4 (𝜑 → (sup(𝐶, ℝ, < ) ≤ (sup(𝐴, ℝ, < ) + 𝐵) ↔ ∀𝑤𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵)))
4826, 47mpbird 258 . . 3 (𝜑 → sup(𝐶, ℝ, < ) ≤ (sup(𝐴, ℝ, < ) + 𝐵))
4932, 42, 45suprcld 11592 . . . . . . 7 (𝜑 → sup(𝐶, ℝ, < ) ∈ ℝ)
5049, 16, 14ltsubaddd 11224 . . . . . 6 (𝜑 → ((sup(𝐶, ℝ, < ) − 𝐵) < sup(𝐴, ℝ, < ) ↔ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)))
5150biimpar 478 . . . . 5 ((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) → (sup(𝐶, ℝ, < ) − 𝐵) < sup(𝐴, ℝ, < ))
5249, 16resubcld 11056 . . . . . . 7 (𝜑 → (sup(𝐶, ℝ, < ) − 𝐵) ∈ ℝ)
53 suprlub 11593 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (sup(𝐶, ℝ, < ) − 𝐵) ∈ ℝ) → ((sup(𝐶, ℝ, < ) − 𝐵) < sup(𝐴, ℝ, < ) ↔ ∃𝑎𝐴 (sup(𝐶, ℝ, < ) − 𝐵) < 𝑎))
5410, 12, 13, 52, 53syl31anc 1365 . . . . . 6 (𝜑 → ((sup(𝐶, ℝ, < ) − 𝐵) < sup(𝐴, ℝ, < ) ↔ ∃𝑎𝐴 (sup(𝐶, ℝ, < ) − 𝐵) < 𝑎))
5554adantr 481 . . . . 5 ((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) → ((sup(𝐶, ℝ, < ) − 𝐵) < sup(𝐴, ℝ, < ) ↔ ∃𝑎𝐴 (sup(𝐶, ℝ, < ) − 𝐵) < 𝑎))
5651, 55mpbid 233 . . . 4 ((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) → ∃𝑎𝐴 (sup(𝐶, ℝ, < ) − 𝐵) < 𝑎)
5727adantlr 711 . . . . . . 7 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎𝐴) → (𝑎 + 𝐵) ∈ ℝ)
5849ad2antrr 722 . . . . . . 7 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎𝐴) → sup(𝐶, ℝ, < ) ∈ ℝ)
59 rspe 3301 . . . . . . . . . . . . . 14 ((𝑎𝐴𝑤 = (𝑎 + 𝐵)) → ∃𝑎𝐴 𝑤 = (𝑎 + 𝐵))
6059, 9sylibr 235 . . . . . . . . . . . . 13 ((𝑎𝐴𝑤 = (𝑎 + 𝐵)) → 𝑤𝐶)
6160adantl 482 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐴𝑤 = (𝑎 + 𝐵))) → 𝑤𝐶)
62 simplrr 774 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎𝐴𝑤 = (𝑎 + 𝐵))) ∧ 𝑤𝐶) → 𝑤 = (𝑎 + 𝐵))
6332, 42, 453jca 1120 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥))
64 suprub 11590 . . . . . . . . . . . . . . 15 (((𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥) ∧ 𝑤𝐶) → 𝑤 ≤ sup(𝐶, ℝ, < ))
6563, 64sylan 580 . . . . . . . . . . . . . 14 ((𝜑𝑤𝐶) → 𝑤 ≤ sup(𝐶, ℝ, < ))
6665adantlr 711 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎𝐴𝑤 = (𝑎 + 𝐵))) ∧ 𝑤𝐶) → 𝑤 ≤ sup(𝐶, ℝ, < ))
6762, 66eqbrtrrd 5081 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎𝐴𝑤 = (𝑎 + 𝐵))) ∧ 𝑤𝐶) → (𝑎 + 𝐵) ≤ sup(𝐶, ℝ, < ))
6861, 67mpdan 683 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐴𝑤 = (𝑎 + 𝐵))) → (𝑎 + 𝐵) ≤ sup(𝐶, ℝ, < ))
6968expr 457 . . . . . . . . . 10 ((𝜑𝑎𝐴) → (𝑤 = (𝑎 + 𝐵) → (𝑎 + 𝐵) ≤ sup(𝐶, ℝ, < )))
7069exlimdv 1925 . . . . . . . . 9 ((𝜑𝑎𝐴) → (∃𝑤 𝑤 = (𝑎 + 𝐵) → (𝑎 + 𝐵) ≤ sup(𝐶, ℝ, < )))
7134, 70mpi 20 . . . . . . . 8 ((𝜑𝑎𝐴) → (𝑎 + 𝐵) ≤ sup(𝐶, ℝ, < ))
7271adantlr 711 . . . . . . 7 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎𝐴) → (𝑎 + 𝐵) ≤ sup(𝐶, ℝ, < ))
7357, 58, 72lensymd 10779 . . . . . 6 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎𝐴) → ¬ sup(𝐶, ℝ, < ) < (𝑎 + 𝐵))
7416ad2antrr 722 . . . . . . 7 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎𝐴) → 𝐵 ∈ ℝ)
7511adantlr 711 . . . . . . 7 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎𝐴) → 𝑎 ∈ ℝ)
7658, 74, 75ltsubaddd 11224 . . . . . 6 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎𝐴) → ((sup(𝐶, ℝ, < ) − 𝐵) < 𝑎 ↔ sup(𝐶, ℝ, < ) < (𝑎 + 𝐵)))
7773, 76mtbird 326 . . . . 5 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎𝐴) → ¬ (sup(𝐶, ℝ, < ) − 𝐵) < 𝑎)
7877nrexdv 3267 . . . 4 ((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) → ¬ ∃𝑎𝐴 (sup(𝐶, ℝ, < ) − 𝐵) < 𝑎)
7956, 78pm2.65da 813 . . 3 (𝜑 → ¬ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵))
8049, 43eqleltd 10772 . . 3 (𝜑 → (sup(𝐶, ℝ, < ) = (sup(𝐴, ℝ, < ) + 𝐵) ↔ (sup(𝐶, ℝ, < ) ≤ (sup(𝐴, ℝ, < ) + 𝐵) ∧ ¬ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵))))
8148, 79, 80mpbir2and 709 . 2 (𝜑 → sup(𝐶, ℝ, < ) = (sup(𝐴, ℝ, < ) + 𝐵))
8281eqcomd 2824 1 (𝜑 → (sup(𝐴, ℝ, < ) + 𝐵) = sup(𝐶, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wex 1771  wcel 2105  {cab 2796  wne 3013  wral 3135  wrex 3136  wss 3933  c0 4288   class class class wbr 5057  (class class class)co 7145  supcsup 8892  cr 10524   + caddc 10528   < clt 10663  cle 10664  cmin 10858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861
This theorem is referenced by:  supadd  11597  supsubc  41497
  Copyright terms: Public domain W3C validator