MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supeq2 Structured version   Visualization version   GIF version

Theorem supeq2 8900
Description: Equality theorem for supremum. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
supeq2 (𝐵 = 𝐶 → sup(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐶, 𝑅))

Proof of Theorem supeq2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabeq 3481 . . . 4 (𝐵 = 𝐶 → {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))} = {𝑥𝐶 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))})
2 raleq 3403 . . . . . 6 (𝐵 = 𝐶 → (∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧) ↔ ∀𝑦𝐶 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧)))
32anbi2d 628 . . . . 5 (𝐵 = 𝐶 → ((∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧)) ↔ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐶 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))))
43rabbidv 3478 . . . 4 (𝐵 = 𝐶 → {𝑥𝐶 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))} = {𝑥𝐶 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐶 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))})
51, 4eqtrd 2853 . . 3 (𝐵 = 𝐶 → {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))} = {𝑥𝐶 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐶 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))})
65unieqd 4840 . 2 (𝐵 = 𝐶 {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))} = {𝑥𝐶 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐶 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))})
7 df-sup 8894 . 2 sup(𝐴, 𝐵, 𝑅) = {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))}
8 df-sup 8894 . 2 sup(𝐴, 𝐶, 𝑅) = {𝑥𝐶 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐶 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))}
96, 7, 83eqtr4g 2878 1 (𝐵 = 𝐶 → sup(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐶, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1528  wral 3135  wrex 3136  {crab 3139   cuni 4830   class class class wbr 5057  supcsup 8892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-ext 2790
This theorem depends on definitions:  df-bi 208  df-an 397  df-ex 1772  df-sb 2061  df-clab 2797  df-cleq 2811  df-clel 2890  df-ral 3140  df-rex 3141  df-rab 3144  df-uni 4831  df-sup 8894
This theorem is referenced by:  infeq2  8931
  Copyright terms: Public domain W3C validator