MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supfil Structured version   Visualization version   GIF version

Theorem supfil 22506
Description: The supersets of a nonempty set which are also subsets of a given base set form a filter. (Contributed by Jeff Hankins, 12-Nov-2009.) (Revised by Stefan O'Rear, 7-Aug-2015.)
Assertion
Ref Expression
supfil ((𝐴𝑉𝐵𝐴𝐵 ≠ ∅) → {𝑥 ∈ 𝒫 𝐴𝐵𝑥} ∈ (Fil‘𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem supfil
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq2 3996 . . . . 5 (𝑥 = 𝑦 → (𝐵𝑥𝐵𝑦))
21elrab 3683 . . . 4 (𝑦 ∈ {𝑥 ∈ 𝒫 𝐴𝐵𝑥} ↔ (𝑦 ∈ 𝒫 𝐴𝐵𝑦))
3 velpw 4547 . . . . 5 (𝑦 ∈ 𝒫 𝐴𝑦𝐴)
43anbi1i 625 . . . 4 ((𝑦 ∈ 𝒫 𝐴𝐵𝑦) ↔ (𝑦𝐴𝐵𝑦))
52, 4bitri 277 . . 3 (𝑦 ∈ {𝑥 ∈ 𝒫 𝐴𝐵𝑥} ↔ (𝑦𝐴𝐵𝑦))
65a1i 11 . 2 ((𝐴𝑉𝐵𝐴𝐵 ≠ ∅) → (𝑦 ∈ {𝑥 ∈ 𝒫 𝐴𝐵𝑥} ↔ (𝑦𝐴𝐵𝑦)))
7 elex 3515 . . 3 (𝐴𝑉𝐴 ∈ V)
873ad2ant1 1129 . 2 ((𝐴𝑉𝐵𝐴𝐵 ≠ ∅) → 𝐴 ∈ V)
9 simp2 1133 . . 3 ((𝐴𝑉𝐵𝐴𝐵 ≠ ∅) → 𝐵𝐴)
10 sseq2 3996 . . . . 5 (𝑦 = 𝐴 → (𝐵𝑦𝐵𝐴))
1110sbcieg 3813 . . . 4 (𝐴 ∈ V → ([𝐴 / 𝑦]𝐵𝑦𝐵𝐴))
128, 11syl 17 . . 3 ((𝐴𝑉𝐵𝐴𝐵 ≠ ∅) → ([𝐴 / 𝑦]𝐵𝑦𝐵𝐴))
139, 12mpbird 259 . 2 ((𝐴𝑉𝐵𝐴𝐵 ≠ ∅) → [𝐴 / 𝑦]𝐵𝑦)
14 ss0 4355 . . . . 5 (𝐵 ⊆ ∅ → 𝐵 = ∅)
1514necon3ai 3044 . . . 4 (𝐵 ≠ ∅ → ¬ 𝐵 ⊆ ∅)
16153ad2ant3 1131 . . 3 ((𝐴𝑉𝐵𝐴𝐵 ≠ ∅) → ¬ 𝐵 ⊆ ∅)
17 0ex 5214 . . . 4 ∅ ∈ V
18 sseq2 3996 . . . 4 (𝑦 = ∅ → (𝐵𝑦𝐵 ⊆ ∅))
1917, 18sbcie 3815 . . 3 ([∅ / 𝑦]𝐵𝑦𝐵 ⊆ ∅)
2016, 19sylnibr 331 . 2 ((𝐴𝑉𝐵𝐴𝐵 ≠ ∅) → ¬ [∅ / 𝑦]𝐵𝑦)
21 sstr 3978 . . . . 5 ((𝐵𝑤𝑤𝑧) → 𝐵𝑧)
2221expcom 416 . . . 4 (𝑤𝑧 → (𝐵𝑤𝐵𝑧))
23 vex 3500 . . . . 5 𝑤 ∈ V
24 sseq2 3996 . . . . 5 (𝑦 = 𝑤 → (𝐵𝑦𝐵𝑤))
2523, 24sbcie 3815 . . . 4 ([𝑤 / 𝑦]𝐵𝑦𝐵𝑤)
26 vex 3500 . . . . 5 𝑧 ∈ V
27 sseq2 3996 . . . . 5 (𝑦 = 𝑧 → (𝐵𝑦𝐵𝑧))
2826, 27sbcie 3815 . . . 4 ([𝑧 / 𝑦]𝐵𝑦𝐵𝑧)
2922, 25, 283imtr4g 298 . . 3 (𝑤𝑧 → ([𝑤 / 𝑦]𝐵𝑦[𝑧 / 𝑦]𝐵𝑦))
30293ad2ant3 1131 . 2 (((𝐴𝑉𝐵𝐴𝐵 ≠ ∅) ∧ 𝑧𝐴𝑤𝑧) → ([𝑤 / 𝑦]𝐵𝑦[𝑧 / 𝑦]𝐵𝑦))
31 ssin 4210 . . . . . 6 ((𝐵𝑧𝐵𝑤) ↔ 𝐵 ⊆ (𝑧𝑤))
3231biimpi 218 . . . . 5 ((𝐵𝑧𝐵𝑤) → 𝐵 ⊆ (𝑧𝑤))
3328, 25, 32syl2anb 599 . . . 4 (([𝑧 / 𝑦]𝐵𝑦[𝑤 / 𝑦]𝐵𝑦) → 𝐵 ⊆ (𝑧𝑤))
3426inex1 5224 . . . . 5 (𝑧𝑤) ∈ V
35 sseq2 3996 . . . . 5 (𝑦 = (𝑧𝑤) → (𝐵𝑦𝐵 ⊆ (𝑧𝑤)))
3634, 35sbcie 3815 . . . 4 ([(𝑧𝑤) / 𝑦]𝐵𝑦𝐵 ⊆ (𝑧𝑤))
3733, 36sylibr 236 . . 3 (([𝑧 / 𝑦]𝐵𝑦[𝑤 / 𝑦]𝐵𝑦) → [(𝑧𝑤) / 𝑦]𝐵𝑦)
3837a1i 11 . 2 (((𝐴𝑉𝐵𝐴𝐵 ≠ ∅) ∧ 𝑧𝐴𝑤𝐴) → (([𝑧 / 𝑦]𝐵𝑦[𝑤 / 𝑦]𝐵𝑦) → [(𝑧𝑤) / 𝑦]𝐵𝑦))
396, 8, 13, 20, 30, 38isfild 22469 1 ((𝐴𝑉𝐵𝐴𝐵 ≠ ∅) → {𝑥 ∈ 𝒫 𝐴𝐵𝑥} ∈ (Fil‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083  wcel 2113  wne 3019  {crab 3145  Vcvv 3497  [wsbc 3775  cin 3938  wss 3939  c0 4294  𝒫 cpw 4542  cfv 6358  Filcfil 22456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fv 6366  df-fbas 20545  df-fil 22457
This theorem is referenced by:  fclscf  22636  flimfnfcls  22639
  Copyright terms: Public domain W3C validator