MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supfil Structured version   Visualization version   GIF version

Theorem supfil 21612
Description: The supersets of a nonempty set which are also subsets of a given base set form a filter. (Contributed by Jeff Hankins, 12-Nov-2009.) (Revised by Stefan O'Rear, 7-Aug-2015.)
Assertion
Ref Expression
supfil ((𝐴𝑉𝐵𝐴𝐵 ≠ ∅) → {𝑥 ∈ 𝒫 𝐴𝐵𝑥} ∈ (Fil‘𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem supfil
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq2 3608 . . . . 5 (𝑥 = 𝑦 → (𝐵𝑥𝐵𝑦))
21elrab 3347 . . . 4 (𝑦 ∈ {𝑥 ∈ 𝒫 𝐴𝐵𝑥} ↔ (𝑦 ∈ 𝒫 𝐴𝐵𝑦))
3 selpw 4139 . . . . 5 (𝑦 ∈ 𝒫 𝐴𝑦𝐴)
43anbi1i 730 . . . 4 ((𝑦 ∈ 𝒫 𝐴𝐵𝑦) ↔ (𝑦𝐴𝐵𝑦))
52, 4bitri 264 . . 3 (𝑦 ∈ {𝑥 ∈ 𝒫 𝐴𝐵𝑥} ↔ (𝑦𝐴𝐵𝑦))
65a1i 11 . 2 ((𝐴𝑉𝐵𝐴𝐵 ≠ ∅) → (𝑦 ∈ {𝑥 ∈ 𝒫 𝐴𝐵𝑥} ↔ (𝑦𝐴𝐵𝑦)))
7 elex 3198 . . 3 (𝐴𝑉𝐴 ∈ V)
873ad2ant1 1080 . 2 ((𝐴𝑉𝐵𝐴𝐵 ≠ ∅) → 𝐴 ∈ V)
9 simp2 1060 . . 3 ((𝐴𝑉𝐵𝐴𝐵 ≠ ∅) → 𝐵𝐴)
10 sseq2 3608 . . . . 5 (𝑦 = 𝐴 → (𝐵𝑦𝐵𝐴))
1110sbcieg 3451 . . . 4 (𝐴 ∈ V → ([𝐴 / 𝑦]𝐵𝑦𝐵𝐴))
128, 11syl 17 . . 3 ((𝐴𝑉𝐵𝐴𝐵 ≠ ∅) → ([𝐴 / 𝑦]𝐵𝑦𝐵𝐴))
139, 12mpbird 247 . 2 ((𝐴𝑉𝐵𝐴𝐵 ≠ ∅) → [𝐴 / 𝑦]𝐵𝑦)
14 ss0 3948 . . . . 5 (𝐵 ⊆ ∅ → 𝐵 = ∅)
1514necon3ai 2815 . . . 4 (𝐵 ≠ ∅ → ¬ 𝐵 ⊆ ∅)
16153ad2ant3 1082 . . 3 ((𝐴𝑉𝐵𝐴𝐵 ≠ ∅) → ¬ 𝐵 ⊆ ∅)
17 0ex 4752 . . . 4 ∅ ∈ V
18 sseq2 3608 . . . 4 (𝑦 = ∅ → (𝐵𝑦𝐵 ⊆ ∅))
1917, 18sbcie 3453 . . 3 ([∅ / 𝑦]𝐵𝑦𝐵 ⊆ ∅)
2016, 19sylnibr 319 . 2 ((𝐴𝑉𝐵𝐴𝐵 ≠ ∅) → ¬ [∅ / 𝑦]𝐵𝑦)
21 sstr 3592 . . . . 5 ((𝐵𝑤𝑤𝑧) → 𝐵𝑧)
2221expcom 451 . . . 4 (𝑤𝑧 → (𝐵𝑤𝐵𝑧))
23 vex 3189 . . . . 5 𝑤 ∈ V
24 sseq2 3608 . . . . 5 (𝑦 = 𝑤 → (𝐵𝑦𝐵𝑤))
2523, 24sbcie 3453 . . . 4 ([𝑤 / 𝑦]𝐵𝑦𝐵𝑤)
26 vex 3189 . . . . 5 𝑧 ∈ V
27 sseq2 3608 . . . . 5 (𝑦 = 𝑧 → (𝐵𝑦𝐵𝑧))
2826, 27sbcie 3453 . . . 4 ([𝑧 / 𝑦]𝐵𝑦𝐵𝑧)
2922, 25, 283imtr4g 285 . . 3 (𝑤𝑧 → ([𝑤 / 𝑦]𝐵𝑦[𝑧 / 𝑦]𝐵𝑦))
30293ad2ant3 1082 . 2 (((𝐴𝑉𝐵𝐴𝐵 ≠ ∅) ∧ 𝑧𝐴𝑤𝑧) → ([𝑤 / 𝑦]𝐵𝑦[𝑧 / 𝑦]𝐵𝑦))
31 ssin 3815 . . . . . 6 ((𝐵𝑧𝐵𝑤) ↔ 𝐵 ⊆ (𝑧𝑤))
3231biimpi 206 . . . . 5 ((𝐵𝑧𝐵𝑤) → 𝐵 ⊆ (𝑧𝑤))
3328, 25, 32syl2anb 496 . . . 4 (([𝑧 / 𝑦]𝐵𝑦[𝑤 / 𝑦]𝐵𝑦) → 𝐵 ⊆ (𝑧𝑤))
3426inex1 4761 . . . . 5 (𝑧𝑤) ∈ V
35 sseq2 3608 . . . . 5 (𝑦 = (𝑧𝑤) → (𝐵𝑦𝐵 ⊆ (𝑧𝑤)))
3634, 35sbcie 3453 . . . 4 ([(𝑧𝑤) / 𝑦]𝐵𝑦𝐵 ⊆ (𝑧𝑤))
3733, 36sylibr 224 . . 3 (([𝑧 / 𝑦]𝐵𝑦[𝑤 / 𝑦]𝐵𝑦) → [(𝑧𝑤) / 𝑦]𝐵𝑦)
3837a1i 11 . 2 (((𝐴𝑉𝐵𝐴𝐵 ≠ ∅) ∧ 𝑧𝐴𝑤𝐴) → (([𝑧 / 𝑦]𝐵𝑦[𝑤 / 𝑦]𝐵𝑦) → [(𝑧𝑤) / 𝑦]𝐵𝑦))
396, 8, 13, 20, 30, 38isfild 21575 1 ((𝐴𝑉𝐵𝐴𝐵 ≠ ∅) → {𝑥 ∈ 𝒫 𝐴𝐵𝑥} ∈ (Fil‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036  wcel 1987  wne 2790  {crab 2911  Vcvv 3186  [wsbc 3418  cin 3555  wss 3556  c0 3893  𝒫 cpw 4132  cfv 5849  Filcfil 21562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-op 4157  df-uni 4405  df-br 4616  df-opab 4676  df-mpt 4677  df-id 4991  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-iota 5812  df-fun 5851  df-fv 5857  df-fbas 19665  df-fil 21563
This theorem is referenced by:  fclscf  21742  flimfnfcls  21745
  Copyright terms: Public domain W3C validator