MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supicc Structured version   Visualization version   GIF version

Theorem supicc 12889
Description: Supremum of a bounded set of real numbers. (Contributed by Thierry Arnoux, 17-May-2019.)
Hypotheses
Ref Expression
supicc.1 (𝜑𝐵 ∈ ℝ)
supicc.2 (𝜑𝐶 ∈ ℝ)
supicc.3 (𝜑𝐴 ⊆ (𝐵[,]𝐶))
supicc.4 (𝜑𝐴 ≠ ∅)
Assertion
Ref Expression
supicc (𝜑 → sup(𝐴, ℝ, < ) ∈ (𝐵[,]𝐶))

Proof of Theorem supicc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supicc.3 . . . 4 (𝜑𝐴 ⊆ (𝐵[,]𝐶))
2 supicc.1 . . . . 5 (𝜑𝐵 ∈ ℝ)
3 supicc.2 . . . . 5 (𝜑𝐶 ∈ ℝ)
4 iccssre 12821 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵[,]𝐶) ⊆ ℝ)
52, 3, 4syl2anc 586 . . . 4 (𝜑 → (𝐵[,]𝐶) ⊆ ℝ)
61, 5sstrd 3979 . . 3 (𝜑𝐴 ⊆ ℝ)
7 supicc.4 . . 3 (𝜑𝐴 ≠ ∅)
82adantr 483 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
98rexrd 10693 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
103adantr 483 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
1110rexrd 10693 . . . . . 6 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ*)
121sselda 3969 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥 ∈ (𝐵[,]𝐶))
13 iccleub 12795 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐵[,]𝐶)) → 𝑥𝐶)
149, 11, 12, 13syl3anc 1367 . . . . 5 ((𝜑𝑥𝐴) → 𝑥𝐶)
1514ralrimiva 3184 . . . 4 (𝜑 → ∀𝑥𝐴 𝑥𝐶)
16 brralrspcev 5128 . . . 4 ((𝐶 ∈ ℝ ∧ ∀𝑥𝐴 𝑥𝐶) → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦)
173, 15, 16syl2anc 586 . . 3 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦)
18 suprcl 11603 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦) → sup(𝐴, ℝ, < ) ∈ ℝ)
196, 7, 17, 18syl3anc 1367 . 2 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ)
206sselda 3969 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
211adantr 483 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐴 ⊆ (𝐵[,]𝐶))
22 simpr 487 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑥𝐴)
23 iccsupr 12833 . . . . . . 7 (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ⊆ (𝐵[,]𝐶) ∧ 𝑥𝐴) → (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦))
248, 10, 21, 22, 23syl211anc 1372 . . . . . 6 ((𝜑𝑥𝐴) → (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦))
2524, 18syl 17 . . . . 5 ((𝜑𝑥𝐴) → sup(𝐴, ℝ, < ) ∈ ℝ)
26 iccgelb 12796 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐵[,]𝐶)) → 𝐵𝑥)
279, 11, 12, 26syl3anc 1367 . . . . 5 ((𝜑𝑥𝐴) → 𝐵𝑥)
28 suprub 11604 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦) ∧ 𝑥𝐴) → 𝑥 ≤ sup(𝐴, ℝ, < ))
2924, 22, 28syl2anc 586 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ≤ sup(𝐴, ℝ, < ))
308, 20, 25, 27, 29letrd 10799 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ≤ sup(𝐴, ℝ, < ))
3130ralrimiva 3184 . . 3 (𝜑 → ∀𝑥𝐴 𝐵 ≤ sup(𝐴, ℝ, < ))
32 r19.3rzv 4446 . . . 4 (𝐴 ≠ ∅ → (𝐵 ≤ sup(𝐴, ℝ, < ) ↔ ∀𝑥𝐴 𝐵 ≤ sup(𝐴, ℝ, < )))
337, 32syl 17 . . 3 (𝜑 → (𝐵 ≤ sup(𝐴, ℝ, < ) ↔ ∀𝑥𝐴 𝐵 ≤ sup(𝐴, ℝ, < )))
3431, 33mpbird 259 . 2 (𝜑𝐵 ≤ sup(𝐴, ℝ, < ))
35 suprleub 11609 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦) ∧ 𝐶 ∈ ℝ) → (sup(𝐴, ℝ, < ) ≤ 𝐶 ↔ ∀𝑥𝐴 𝑥𝐶))
366, 7, 17, 3, 35syl31anc 1369 . . 3 (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐶 ↔ ∀𝑥𝐴 𝑥𝐶))
3715, 36mpbird 259 . 2 (𝜑 → sup(𝐴, ℝ, < ) ≤ 𝐶)
38 elicc2 12804 . . 3 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (sup(𝐴, ℝ, < ) ∈ (𝐵[,]𝐶) ↔ (sup(𝐴, ℝ, < ) ∈ ℝ ∧ 𝐵 ≤ sup(𝐴, ℝ, < ) ∧ sup(𝐴, ℝ, < ) ≤ 𝐶)))
392, 3, 38syl2anc 586 . 2 (𝜑 → (sup(𝐴, ℝ, < ) ∈ (𝐵[,]𝐶) ↔ (sup(𝐴, ℝ, < ) ∈ ℝ ∧ 𝐵 ≤ sup(𝐴, ℝ, < ) ∧ sup(𝐴, ℝ, < ) ≤ 𝐶)))
4019, 34, 37, 39mpbir3and 1338 1 (𝜑 → sup(𝐴, ℝ, < ) ∈ (𝐵[,]𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wcel 2114  wne 3018  wral 3140  wrex 3141  wss 3938  c0 4293   class class class wbr 5068  (class class class)co 7158  supcsup 8906  cr 10538  *cxr 10676   < clt 10677  cle 10678  [,]cicc 12744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-po 5476  df-so 5477  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-icc 12748
This theorem is referenced by:  supicclub2  12892  hoidmv1lelem1  42880  hoidmvlelem1  42884
  Copyright terms: Public domain W3C validator