MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supicc Structured version   Visualization version   GIF version

Theorem supicc 12513
Description: Supremum of a bounded set of real numbers. (Contributed by Thierry Arnoux, 17-May-2019.)
Hypotheses
Ref Expression
supicc.1 (𝜑𝐵 ∈ ℝ)
supicc.2 (𝜑𝐶 ∈ ℝ)
supicc.3 (𝜑𝐴 ⊆ (𝐵[,]𝐶))
supicc.4 (𝜑𝐴 ≠ ∅)
Assertion
Ref Expression
supicc (𝜑 → sup(𝐴, ℝ, < ) ∈ (𝐵[,]𝐶))

Proof of Theorem supicc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supicc.3 . . . 4 (𝜑𝐴 ⊆ (𝐵[,]𝐶))
2 supicc.1 . . . . 5 (𝜑𝐵 ∈ ℝ)
3 supicc.2 . . . . 5 (𝜑𝐶 ∈ ℝ)
4 iccssre 12448 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵[,]𝐶) ⊆ ℝ)
52, 3, 4syl2anc 696 . . . 4 (𝜑 → (𝐵[,]𝐶) ⊆ ℝ)
61, 5sstrd 3754 . . 3 (𝜑𝐴 ⊆ ℝ)
7 supicc.4 . . 3 (𝜑𝐴 ≠ ∅)
82adantr 472 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
98rexrd 10281 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
103adantr 472 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
1110rexrd 10281 . . . . . 6 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ*)
121sselda 3744 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥 ∈ (𝐵[,]𝐶))
13 iccleub 12422 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐵[,]𝐶)) → 𝑥𝐶)
149, 11, 12, 13syl3anc 1477 . . . . 5 ((𝜑𝑥𝐴) → 𝑥𝐶)
1514ralrimiva 3104 . . . 4 (𝜑 → ∀𝑥𝐴 𝑥𝐶)
16 breq2 4808 . . . . . 6 (𝑦 = 𝐶 → (𝑥𝑦𝑥𝐶))
1716ralbidv 3124 . . . . 5 (𝑦 = 𝐶 → (∀𝑥𝐴 𝑥𝑦 ↔ ∀𝑥𝐴 𝑥𝐶))
1817rspcev 3449 . . . 4 ((𝐶 ∈ ℝ ∧ ∀𝑥𝐴 𝑥𝐶) → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦)
193, 15, 18syl2anc 696 . . 3 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦)
20 suprcl 11175 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦) → sup(𝐴, ℝ, < ) ∈ ℝ)
216, 7, 19, 20syl3anc 1477 . 2 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ)
226sselda 3744 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
231adantr 472 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐴 ⊆ (𝐵[,]𝐶))
24 simpr 479 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑥𝐴)
25 iccsupr 12459 . . . . . . 7 (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ⊆ (𝐵[,]𝐶) ∧ 𝑥𝐴) → (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦))
268, 10, 23, 24, 25syl211anc 1483 . . . . . 6 ((𝜑𝑥𝐴) → (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦))
2726, 20syl 17 . . . . 5 ((𝜑𝑥𝐴) → sup(𝐴, ℝ, < ) ∈ ℝ)
28 iccgelb 12423 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐵[,]𝐶)) → 𝐵𝑥)
299, 11, 12, 28syl3anc 1477 . . . . 5 ((𝜑𝑥𝐴) → 𝐵𝑥)
30 suprub 11176 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦) ∧ 𝑥𝐴) → 𝑥 ≤ sup(𝐴, ℝ, < ))
3126, 24, 30syl2anc 696 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ≤ sup(𝐴, ℝ, < ))
328, 22, 27, 29, 31letrd 10386 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ≤ sup(𝐴, ℝ, < ))
3332ralrimiva 3104 . . 3 (𝜑 → ∀𝑥𝐴 𝐵 ≤ sup(𝐴, ℝ, < ))
34 r19.3rzv 4208 . . . 4 (𝐴 ≠ ∅ → (𝐵 ≤ sup(𝐴, ℝ, < ) ↔ ∀𝑥𝐴 𝐵 ≤ sup(𝐴, ℝ, < )))
357, 34syl 17 . . 3 (𝜑 → (𝐵 ≤ sup(𝐴, ℝ, < ) ↔ ∀𝑥𝐴 𝐵 ≤ sup(𝐴, ℝ, < )))
3633, 35mpbird 247 . 2 (𝜑𝐵 ≤ sup(𝐴, ℝ, < ))
37 suprleub 11181 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦) ∧ 𝐶 ∈ ℝ) → (sup(𝐴, ℝ, < ) ≤ 𝐶 ↔ ∀𝑥𝐴 𝑥𝐶))
386, 7, 19, 3, 37syl31anc 1480 . . 3 (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐶 ↔ ∀𝑥𝐴 𝑥𝐶))
3915, 38mpbird 247 . 2 (𝜑 → sup(𝐴, ℝ, < ) ≤ 𝐶)
40 elicc2 12431 . . 3 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (sup(𝐴, ℝ, < ) ∈ (𝐵[,]𝐶) ↔ (sup(𝐴, ℝ, < ) ∈ ℝ ∧ 𝐵 ≤ sup(𝐴, ℝ, < ) ∧ sup(𝐴, ℝ, < ) ≤ 𝐶)))
412, 3, 40syl2anc 696 . 2 (𝜑 → (sup(𝐴, ℝ, < ) ∈ (𝐵[,]𝐶) ↔ (sup(𝐴, ℝ, < ) ∈ ℝ ∧ 𝐵 ≤ sup(𝐴, ℝ, < ) ∧ sup(𝐴, ℝ, < ) ≤ 𝐶)))
4221, 36, 39, 41mpbir3and 1428 1 (𝜑 → sup(𝐴, ℝ, < ) ∈ (𝐵[,]𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  wral 3050  wrex 3051  wss 3715  c0 4058   class class class wbr 4804  (class class class)co 6813  supcsup 8511  cr 10127  *cxr 10265   < clt 10266  cle 10267  [,]cicc 12371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-sup 8513  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-icc 12375
This theorem is referenced by:  supicclub2  12516  hoidmv1lelem1  41311  hoidmvlelem1  41315
  Copyright terms: Public domain W3C validator