Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  supicclub Structured version   Visualization version   GIF version

Theorem supicclub 12280
 Description: The supremum of a bounded set of real numbers is the least upper bound. (Contributed by Thierry Arnoux, 23-May-2019.)
Hypotheses
Ref Expression
supicc.1 (𝜑𝐵 ∈ ℝ)
supicc.2 (𝜑𝐶 ∈ ℝ)
supicc.3 (𝜑𝐴 ⊆ (𝐵[,]𝐶))
supicc.4 (𝜑𝐴 ≠ ∅)
supiccub.1 (𝜑𝐷𝐴)
Assertion
Ref Expression
supicclub (𝜑 → (𝐷 < sup(𝐴, ℝ, < ) ↔ ∃𝑧𝐴 𝐷 < 𝑧))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐷
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑧)   𝐶(𝑧)

Proof of Theorem supicclub
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supicc.3 . . 3 (𝜑𝐴 ⊆ (𝐵[,]𝐶))
2 supicc.1 . . . 4 (𝜑𝐵 ∈ ℝ)
3 supicc.2 . . . 4 (𝜑𝐶 ∈ ℝ)
4 iccssre 12213 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵[,]𝐶) ⊆ ℝ)
52, 3, 4syl2anc 692 . . 3 (𝜑 → (𝐵[,]𝐶) ⊆ ℝ)
61, 5sstrd 3598 . 2 (𝜑𝐴 ⊆ ℝ)
7 supicc.4 . 2 (𝜑𝐴 ≠ ∅)
82adantr 481 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
98rexrd 10049 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
103adantr 481 . . . . . 6 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
1110rexrd 10049 . . . . 5 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ*)
121sselda 3588 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ∈ (𝐵[,]𝐶))
13 iccleub 12187 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐵[,]𝐶)) → 𝑥𝐶)
149, 11, 12, 13syl3anc 1323 . . . 4 ((𝜑𝑥𝐴) → 𝑥𝐶)
1514ralrimiva 2962 . . 3 (𝜑 → ∀𝑥𝐴 𝑥𝐶)
16 breq2 4627 . . . . 5 (𝑦 = 𝐶 → (𝑥𝑦𝑥𝐶))
1716ralbidv 2982 . . . 4 (𝑦 = 𝐶 → (∀𝑥𝐴 𝑥𝑦 ↔ ∀𝑥𝐴 𝑥𝐶))
1817rspcev 3299 . . 3 ((𝐶 ∈ ℝ ∧ ∀𝑥𝐴 𝑥𝐶) → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦)
193, 15, 18syl2anc 692 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦)
20 supiccub.1 . . 3 (𝜑𝐷𝐴)
216, 20sseldd 3589 . 2 (𝜑𝐷 ∈ ℝ)
22 suprlub 10947 . 2 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦) ∧ 𝐷 ∈ ℝ) → (𝐷 < sup(𝐴, ℝ, < ) ↔ ∃𝑧𝐴 𝐷 < 𝑧))
236, 7, 19, 21, 22syl31anc 1326 1 (𝜑 → (𝐷 < sup(𝐴, ℝ, < ) ↔ ∃𝑧𝐴 𝐷 < 𝑧))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  ∀wral 2908  ∃wrex 2909   ⊆ wss 3560  ∅c0 3897   class class class wbr 4623  (class class class)co 6615  supcsup 8306  ℝcr 9895  ℝ*cxr 10033   < clt 10034   ≤ cle 10035  [,]cicc 12136 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-po 5005  df-so 5006  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-sup 8308  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-icc 12140 This theorem is referenced by:  supicclub2  12281
 Copyright terms: Public domain W3C validator