![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > supicclub2 | Structured version Visualization version GIF version |
Description: The supremum of a bounded set of real numbers is the least upper bound. (Contributed by Thierry Arnoux, 23-May-2019.) |
Ref | Expression |
---|---|
supicc.1 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
supicc.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
supicc.3 | ⊢ (𝜑 → 𝐴 ⊆ (𝐵[,]𝐶)) |
supicc.4 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
supiccub.1 | ⊢ (𝜑 → 𝐷 ∈ 𝐴) |
supicclub2.1 | ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝑧 ≤ 𝐷) |
Ref | Expression |
---|---|
supicclub2 | ⊢ (𝜑 → sup(𝐴, ℝ, < ) ≤ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supicclub2.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝑧 ≤ 𝐷) | |
2 | supicc.3 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ⊆ (𝐵[,]𝐶)) | |
3 | iccssxr 12449 | . . . . . . . 8 ⊢ (𝐵[,]𝐶) ⊆ ℝ* | |
4 | 2, 3 | syl6ss 3756 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ ℝ*) |
5 | 4 | sselda 3744 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ ℝ*) |
6 | supiccub.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐷 ∈ 𝐴) | |
7 | 4, 6 | sseldd 3745 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ ℝ*) |
8 | 7 | adantr 472 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐷 ∈ ℝ*) |
9 | xrlenlt 10295 | . . . . . 6 ⊢ ((𝑧 ∈ ℝ* ∧ 𝐷 ∈ ℝ*) → (𝑧 ≤ 𝐷 ↔ ¬ 𝐷 < 𝑧)) | |
10 | 5, 8, 9 | syl2anc 696 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝑧 ≤ 𝐷 ↔ ¬ 𝐷 < 𝑧)) |
11 | 1, 10 | mpbid 222 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → ¬ 𝐷 < 𝑧) |
12 | 11 | nrexdv 3139 | . . 3 ⊢ (𝜑 → ¬ ∃𝑧 ∈ 𝐴 𝐷 < 𝑧) |
13 | supicc.1 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
14 | supicc.2 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
15 | supicc.4 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
16 | 13, 14, 2, 15, 6 | supicclub 12515 | . . 3 ⊢ (𝜑 → (𝐷 < sup(𝐴, ℝ, < ) ↔ ∃𝑧 ∈ 𝐴 𝐷 < 𝑧)) |
17 | 12, 16 | mtbird 314 | . 2 ⊢ (𝜑 → ¬ 𝐷 < sup(𝐴, ℝ, < )) |
18 | 13, 14, 2, 15 | supicc 12513 | . . . 4 ⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈ (𝐵[,]𝐶)) |
19 | 3, 18 | sseldi 3742 | . . 3 ⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ*) |
20 | xrlenlt 10295 | . . 3 ⊢ ((sup(𝐴, ℝ, < ) ∈ ℝ* ∧ 𝐷 ∈ ℝ*) → (sup(𝐴, ℝ, < ) ≤ 𝐷 ↔ ¬ 𝐷 < sup(𝐴, ℝ, < ))) | |
21 | 19, 7, 20 | syl2anc 696 | . 2 ⊢ (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐷 ↔ ¬ 𝐷 < sup(𝐴, ℝ, < ))) |
22 | 17, 21 | mpbird 247 | 1 ⊢ (𝜑 → sup(𝐴, ℝ, < ) ≤ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 ∈ wcel 2139 ≠ wne 2932 ∃wrex 3051 ⊆ wss 3715 ∅c0 4058 class class class wbr 4804 (class class class)co 6813 supcsup 8511 ℝcr 10127 ℝ*cxr 10265 < clt 10266 ≤ cle 10267 [,]cicc 12371 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 ax-pre-sup 10206 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-po 5187 df-so 5188 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-1st 7333 df-2nd 7334 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-sup 8513 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-icc 12375 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |