MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suplem2pr Structured version   Visualization version   GIF version

Theorem suplem2pr 9913
Description: The union of a set of positive reals (if a positive real) is its supremum (the least upper bound). Part of Proposition 9-3.3 of [Gleason] p. 122. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
suplem2pr (𝐴P → ((𝑦𝐴 → ¬ 𝐴<P 𝑦) ∧ (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧)))
Distinct variable group:   𝑦,𝑧,𝐴

Proof of Theorem suplem2pr
StepHypRef Expression
1 ltrelpr 9858 . . . . . 6 <P ⊆ (P × P)
21brel 5202 . . . . 5 (𝑦<P 𝐴 → (𝑦P 𝐴P))
32simpld 474 . . . 4 (𝑦<P 𝐴𝑦P)
4 ralnex 3021 . . . . . . . . 9 (∀𝑧𝐴 ¬ 𝑦<P 𝑧 ↔ ¬ ∃𝑧𝐴 𝑦<P 𝑧)
5 ssel2 3631 . . . . . . . . . . . 12 ((𝐴P𝑧𝐴) → 𝑧P)
6 ltsopr 9892 . . . . . . . . . . . . . . . 16 <P Or P
7 sotric 5090 . . . . . . . . . . . . . . . 16 ((<P Or P ∧ (𝑦P𝑧P)) → (𝑦<P 𝑧 ↔ ¬ (𝑦 = 𝑧𝑧<P 𝑦)))
86, 7mpan 706 . . . . . . . . . . . . . . 15 ((𝑦P𝑧P) → (𝑦<P 𝑧 ↔ ¬ (𝑦 = 𝑧𝑧<P 𝑦)))
98con2bid 343 . . . . . . . . . . . . . 14 ((𝑦P𝑧P) → ((𝑦 = 𝑧𝑧<P 𝑦) ↔ ¬ 𝑦<P 𝑧))
109ancoms 468 . . . . . . . . . . . . 13 ((𝑧P𝑦P) → ((𝑦 = 𝑧𝑧<P 𝑦) ↔ ¬ 𝑦<P 𝑧))
11 ltprord 9890 . . . . . . . . . . . . . . 15 ((𝑧P𝑦P) → (𝑧<P 𝑦𝑧𝑦))
1211orbi2d 738 . . . . . . . . . . . . . 14 ((𝑧P𝑦P) → ((𝑦 = 𝑧𝑧<P 𝑦) ↔ (𝑦 = 𝑧𝑧𝑦)))
13 sspss 3739 . . . . . . . . . . . . . . 15 (𝑧𝑦 ↔ (𝑧𝑦𝑧 = 𝑦))
14 equcom 1991 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑦𝑦 = 𝑧)
1514orbi2i 540 . . . . . . . . . . . . . . 15 ((𝑧𝑦𝑧 = 𝑦) ↔ (𝑧𝑦𝑦 = 𝑧))
16 orcom 401 . . . . . . . . . . . . . . 15 ((𝑧𝑦𝑦 = 𝑧) ↔ (𝑦 = 𝑧𝑧𝑦))
1713, 15, 163bitri 286 . . . . . . . . . . . . . 14 (𝑧𝑦 ↔ (𝑦 = 𝑧𝑧𝑦))
1812, 17syl6bbr 278 . . . . . . . . . . . . 13 ((𝑧P𝑦P) → ((𝑦 = 𝑧𝑧<P 𝑦) ↔ 𝑧𝑦))
1910, 18bitr3d 270 . . . . . . . . . . . 12 ((𝑧P𝑦P) → (¬ 𝑦<P 𝑧𝑧𝑦))
205, 19sylan 487 . . . . . . . . . . 11 (((𝐴P𝑧𝐴) ∧ 𝑦P) → (¬ 𝑦<P 𝑧𝑧𝑦))
2120an32s 863 . . . . . . . . . 10 (((𝐴P𝑦P) ∧ 𝑧𝐴) → (¬ 𝑦<P 𝑧𝑧𝑦))
2221ralbidva 3014 . . . . . . . . 9 ((𝐴P𝑦P) → (∀𝑧𝐴 ¬ 𝑦<P 𝑧 ↔ ∀𝑧𝐴 𝑧𝑦))
234, 22syl5bbr 274 . . . . . . . 8 ((𝐴P𝑦P) → (¬ ∃𝑧𝐴 𝑦<P 𝑧 ↔ ∀𝑧𝐴 𝑧𝑦))
24 unissb 4501 . . . . . . . 8 ( 𝐴𝑦 ↔ ∀𝑧𝐴 𝑧𝑦)
2523, 24syl6bbr 278 . . . . . . 7 ((𝐴P𝑦P) → (¬ ∃𝑧𝐴 𝑦<P 𝑧 𝐴𝑦))
26 ssnpss 3743 . . . . . . . 8 ( 𝐴𝑦 → ¬ 𝑦 𝐴)
27 ltprord 9890 . . . . . . . . . 10 ((𝑦P 𝐴P) → (𝑦<P 𝐴𝑦 𝐴))
2827biimpd 219 . . . . . . . . 9 ((𝑦P 𝐴P) → (𝑦<P 𝐴𝑦 𝐴))
292, 28mpcom 38 . . . . . . . 8 (𝑦<P 𝐴𝑦 𝐴)
3026, 29nsyl 135 . . . . . . 7 ( 𝐴𝑦 → ¬ 𝑦<P 𝐴)
3125, 30syl6bi 243 . . . . . 6 ((𝐴P𝑦P) → (¬ ∃𝑧𝐴 𝑦<P 𝑧 → ¬ 𝑦<P 𝐴))
3231con4d 114 . . . . 5 ((𝐴P𝑦P) → (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧))
3332ex 449 . . . 4 (𝐴P → (𝑦P → (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧)))
343, 33syl5 34 . . 3 (𝐴P → (𝑦<P 𝐴 → (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧)))
3534pm2.43d 53 . 2 (𝐴P → (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧))
36 elssuni 4499 . . . 4 (𝑦𝐴𝑦 𝐴)
37 ssnpss 3743 . . . 4 (𝑦 𝐴 → ¬ 𝐴𝑦)
3836, 37syl 17 . . 3 (𝑦𝐴 → ¬ 𝐴𝑦)
391brel 5202 . . . 4 ( 𝐴<P 𝑦 → ( 𝐴P𝑦P))
40 ltprord 9890 . . . . 5 (( 𝐴P𝑦P) → ( 𝐴<P 𝑦 𝐴𝑦))
4140biimpd 219 . . . 4 (( 𝐴P𝑦P) → ( 𝐴<P 𝑦 𝐴𝑦))
4239, 41mpcom 38 . . 3 ( 𝐴<P 𝑦 𝐴𝑦)
4338, 42nsyl 135 . 2 (𝑦𝐴 → ¬ 𝐴<P 𝑦)
4435, 43jctil 559 1 (𝐴P → ((𝑦𝐴 → ¬ 𝐴<P 𝑦) ∧ (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  wcel 2030  wral 2941  wrex 2942  wss 3607  wpss 3608   cuni 4468   class class class wbr 4685   Or wor 5063  Pcnp 9719  <P cltp 9723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-oadd 7609  df-omul 7610  df-er 7787  df-ni 9732  df-mi 9734  df-lti 9735  df-ltpq 9770  df-enq 9771  df-nq 9772  df-ltnq 9778  df-np 9841  df-ltp 9845
This theorem is referenced by:  supexpr  9914
  Copyright terms: Public domain W3C validator