![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > suplesup2 | Structured version Visualization version GIF version |
Description: If any element of 𝐴 is smaller or equal to an element in 𝐵, then the supremum of 𝐴 is smaller or equal to the supremum of 𝐵. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
suplesup2.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ*) |
suplesup2.b | ⊢ (𝜑 → 𝐵 ⊆ ℝ*) |
suplesup2.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) |
Ref | Expression |
---|---|
suplesup2 | ⊢ (𝜑 → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suplesup2.c | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) | |
2 | suplesup2.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ⊆ ℝ*) | |
3 | 2 | sselda 3636 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ*) |
4 | 3 | 3ad2ant1 1102 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ≤ 𝑦) → 𝑥 ∈ ℝ*) |
5 | simp1l 1105 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ≤ 𝑦) → 𝜑) | |
6 | simp2 1082 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ≤ 𝑦) → 𝑦 ∈ 𝐵) | |
7 | suplesup2.b | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ⊆ ℝ*) | |
8 | 7 | sselda 3636 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ ℝ*) |
9 | 5, 6, 8 | syl2anc 694 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ≤ 𝑦) → 𝑦 ∈ ℝ*) |
10 | supxrcl 12183 | . . . . . . . . 9 ⊢ (𝐵 ⊆ ℝ* → sup(𝐵, ℝ*, < ) ∈ ℝ*) | |
11 | 7, 10 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → sup(𝐵, ℝ*, < ) ∈ ℝ*) |
12 | 5, 11 | syl 17 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ≤ 𝑦) → sup(𝐵, ℝ*, < ) ∈ ℝ*) |
13 | simp3 1083 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ≤ 𝑦) → 𝑥 ≤ 𝑦) | |
14 | 7 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐵 ⊆ ℝ*) |
15 | simpr 476 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) | |
16 | supxrub 12192 | . . . . . . . . 9 ⊢ ((𝐵 ⊆ ℝ* ∧ 𝑦 ∈ 𝐵) → 𝑦 ≤ sup(𝐵, ℝ*, < )) | |
17 | 14, 15, 16 | syl2anc 694 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑦 ≤ sup(𝐵, ℝ*, < )) |
18 | 5, 6, 17 | syl2anc 694 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ≤ 𝑦) → 𝑦 ≤ sup(𝐵, ℝ*, < )) |
19 | 4, 9, 12, 13, 18 | xrletrd 12031 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ≤ 𝑦) → 𝑥 ≤ sup(𝐵, ℝ*, < )) |
20 | 19 | 3exp 1283 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ 𝐵 → (𝑥 ≤ 𝑦 → 𝑥 ≤ sup(𝐵, ℝ*, < )))) |
21 | 20 | rexlimdv 3059 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∃𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 → 𝑥 ≤ sup(𝐵, ℝ*, < ))) |
22 | 1, 21 | mpd 15 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≤ sup(𝐵, ℝ*, < )) |
23 | 22 | ralrimiva 2995 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑥 ≤ sup(𝐵, ℝ*, < )) |
24 | supxrleub 12194 | . . 3 ⊢ ((𝐴 ⊆ ℝ* ∧ sup(𝐵, ℝ*, < ) ∈ ℝ*) → (sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ) ↔ ∀𝑥 ∈ 𝐴 𝑥 ≤ sup(𝐵, ℝ*, < ))) | |
25 | 2, 11, 24 | syl2anc 694 | . 2 ⊢ (𝜑 → (sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ) ↔ ∀𝑥 ∈ 𝐴 𝑥 ≤ sup(𝐵, ℝ*, < ))) |
26 | 23, 25 | mpbird 247 | 1 ⊢ (𝜑 → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1054 ∈ wcel 2030 ∀wral 2941 ∃wrex 2942 ⊆ wss 3607 class class class wbr 4685 supcsup 8387 ℝ*cxr 10111 < clt 10112 ≤ cle 10113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-po 5064 df-so 5065 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-sup 8389 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 |
This theorem is referenced by: sge0reuz 40982 |
Copyright terms: Public domain | W3C validator |