Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supminfxrrnmpt Structured version   Visualization version   GIF version

Theorem supminfxrrnmpt 41739
Description: The indexed supremum of a set of reals is the negation of the indexed infimum of that set's image under negation. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
supminfxrrnmpt.x 𝑥𝜑
supminfxrrnmpt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
Assertion
Ref Expression
supminfxrrnmpt (𝜑 → sup(ran (𝑥𝐴𝐵), ℝ*, < ) = -𝑒inf(ran (𝑥𝐴 ↦ -𝑒𝐵), ℝ*, < ))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem supminfxrrnmpt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 supminfxrrnmpt.x . . . 4 𝑥𝜑
2 eqid 2821 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
3 supminfxrrnmpt.b . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
41, 2, 3rnmptssd 41450 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ⊆ ℝ*)
54supminfxr2 41737 . 2 (𝜑 → sup(ran (𝑥𝐴𝐵), ℝ*, < ) = -𝑒inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)}, ℝ*, < ))
6 xnegex 12595 . . . . . . . . . . . 12 -𝑒𝑦 ∈ V
72elrnmpt 5823 . . . . . . . . . . . 12 (-𝑒𝑦 ∈ V → (-𝑒𝑦 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 -𝑒𝑦 = 𝐵))
86, 7ax-mp 5 . . . . . . . . . . 11 (-𝑒𝑦 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 -𝑒𝑦 = 𝐵)
98biimpi 218 . . . . . . . . . 10 (-𝑒𝑦 ∈ ran (𝑥𝐴𝐵) → ∃𝑥𝐴 -𝑒𝑦 = 𝐵)
10 eqid 2821 . . . . . . . . . . 11 (𝑥𝐴 ↦ -𝑒𝐵) = (𝑥𝐴 ↦ -𝑒𝐵)
11 xnegneg 12601 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ* → -𝑒-𝑒𝑦 = 𝑦)
1211eqcomd 2827 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ*𝑦 = -𝑒-𝑒𝑦)
1312adantr 483 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ* ∧ -𝑒𝑦 = 𝐵) → 𝑦 = -𝑒-𝑒𝑦)
14 xnegeq 12594 . . . . . . . . . . . . . . . 16 (-𝑒𝑦 = 𝐵 → -𝑒-𝑒𝑦 = -𝑒𝐵)
1514adantl 484 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ* ∧ -𝑒𝑦 = 𝐵) → -𝑒-𝑒𝑦 = -𝑒𝐵)
1613, 15eqtrd 2856 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ* ∧ -𝑒𝑦 = 𝐵) → 𝑦 = -𝑒𝐵)
1716ex 415 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* → (-𝑒𝑦 = 𝐵𝑦 = -𝑒𝐵))
1817reximdv 3273 . . . . . . . . . . . 12 (𝑦 ∈ ℝ* → (∃𝑥𝐴 -𝑒𝑦 = 𝐵 → ∃𝑥𝐴 𝑦 = -𝑒𝐵))
1918imp 409 . . . . . . . . . . 11 ((𝑦 ∈ ℝ* ∧ ∃𝑥𝐴 -𝑒𝑦 = 𝐵) → ∃𝑥𝐴 𝑦 = -𝑒𝐵)
20 simpl 485 . . . . . . . . . . 11 ((𝑦 ∈ ℝ* ∧ ∃𝑥𝐴 -𝑒𝑦 = 𝐵) → 𝑦 ∈ ℝ*)
2110, 19, 20elrnmptd 41432 . . . . . . . . . 10 ((𝑦 ∈ ℝ* ∧ ∃𝑥𝐴 -𝑒𝑦 = 𝐵) → 𝑦 ∈ ran (𝑥𝐴 ↦ -𝑒𝐵))
229, 21sylan2 594 . . . . . . . . 9 ((𝑦 ∈ ℝ* ∧ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)) → 𝑦 ∈ ran (𝑥𝐴 ↦ -𝑒𝐵))
2322ex 415 . . . . . . . 8 (𝑦 ∈ ℝ* → (-𝑒𝑦 ∈ ran (𝑥𝐴𝐵) → 𝑦 ∈ ran (𝑥𝐴 ↦ -𝑒𝐵)))
2423rgen 3148 . . . . . . 7 𝑦 ∈ ℝ* (-𝑒𝑦 ∈ ran (𝑥𝐴𝐵) → 𝑦 ∈ ran (𝑥𝐴 ↦ -𝑒𝐵))
25 rabss 4048 . . . . . . . 8 ({𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)} ⊆ ran (𝑥𝐴 ↦ -𝑒𝐵) ↔ ∀𝑦 ∈ ℝ* (-𝑒𝑦 ∈ ran (𝑥𝐴𝐵) → 𝑦 ∈ ran (𝑥𝐴 ↦ -𝑒𝐵)))
2625biimpri 230 . . . . . . 7 (∀𝑦 ∈ ℝ* (-𝑒𝑦 ∈ ran (𝑥𝐴𝐵) → 𝑦 ∈ ran (𝑥𝐴 ↦ -𝑒𝐵)) → {𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)} ⊆ ran (𝑥𝐴 ↦ -𝑒𝐵))
2724, 26ax-mp 5 . . . . . 6 {𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)} ⊆ ran (𝑥𝐴 ↦ -𝑒𝐵)
2827a1i 11 . . . . 5 (𝜑 → {𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)} ⊆ ran (𝑥𝐴 ↦ -𝑒𝐵))
29 nfcv 2977 . . . . . . . 8 𝑥-𝑒𝑦
30 nfmpt1 5157 . . . . . . . . 9 𝑥(𝑥𝐴𝐵)
3130nfrn 5819 . . . . . . . 8 𝑥ran (𝑥𝐴𝐵)
3229, 31nfel 2992 . . . . . . 7 𝑥-𝑒𝑦 ∈ ran (𝑥𝐴𝐵)
33 nfcv 2977 . . . . . . 7 𝑥*
3432, 33nfrabw 3386 . . . . . 6 𝑥{𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)}
35 xnegeq 12594 . . . . . . . 8 (𝑦 = -𝑒𝐵 → -𝑒𝑦 = -𝑒-𝑒𝐵)
3635eleq1d 2897 . . . . . . 7 (𝑦 = -𝑒𝐵 → (-𝑒𝑦 ∈ ran (𝑥𝐴𝐵) ↔ -𝑒-𝑒𝐵 ∈ ran (𝑥𝐴𝐵)))
373xnegcld 12687 . . . . . . 7 ((𝜑𝑥𝐴) → -𝑒𝐵 ∈ ℝ*)
38 xnegneg 12601 . . . . . . . . 9 (𝐵 ∈ ℝ* → -𝑒-𝑒𝐵 = 𝐵)
393, 38syl 17 . . . . . . . 8 ((𝜑𝑥𝐴) → -𝑒-𝑒𝐵 = 𝐵)
40 simpr 487 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥𝐴)
412, 40, 3elrnmpt1d 41492 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
4239, 41eqeltrd 2913 . . . . . . 7 ((𝜑𝑥𝐴) → -𝑒-𝑒𝐵 ∈ ran (𝑥𝐴𝐵))
4336, 37, 42elrabd 3682 . . . . . 6 ((𝜑𝑥𝐴) → -𝑒𝐵 ∈ {𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)})
441, 34, 10, 43rnmptssdf 41518 . . . . 5 (𝜑 → ran (𝑥𝐴 ↦ -𝑒𝐵) ⊆ {𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)})
4528, 44eqssd 3984 . . . 4 (𝜑 → {𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)} = ran (𝑥𝐴 ↦ -𝑒𝐵))
4645infeq1d 8935 . . 3 (𝜑 → inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)}, ℝ*, < ) = inf(ran (𝑥𝐴 ↦ -𝑒𝐵), ℝ*, < ))
4746xnegeqd 41703 . 2 (𝜑 → -𝑒inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)}, ℝ*, < ) = -𝑒inf(ran (𝑥𝐴 ↦ -𝑒𝐵), ℝ*, < ))
485, 47eqtrd 2856 1 (𝜑 → sup(ran (𝑥𝐴𝐵), ℝ*, < ) = -𝑒inf(ran (𝑥𝐴 ↦ -𝑒𝐵), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wnf 1780  wcel 2110  wral 3138  wrex 3139  {crab 3142  Vcvv 3495  wss 3936  cmpt 5139  ran crn 5551  supcsup 8898  infcinf 8899  *cxr 10668   < clt 10669  -𝑒cxne 12498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-po 5469  df-so 5470  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-xneg 12501
This theorem is referenced by:  liminfvalxr  42056
  Copyright terms: Public domain W3C validator