MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supmullem1 Structured version   Visualization version   GIF version

Theorem supmullem1 10840
Description: Lemma for supmul 10842. (Contributed by Mario Carneiro, 5-Jul-2013.)
Hypotheses
Ref Expression
supmul.1 𝐶 = {𝑧 ∣ ∃𝑣𝐴𝑏𝐵 𝑧 = (𝑣 · 𝑏)}
supmul.2 (𝜑 ↔ ((∀𝑥𝐴 0 ≤ 𝑥 ∧ ∀𝑥𝐵 0 ≤ 𝑥) ∧ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥)))
Assertion
Ref Expression
supmullem1 (𝜑 → ∀𝑤𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )))
Distinct variable groups:   𝐴,𝑏,𝑣,𝑥,𝑦,𝑤,𝑧   𝐵,𝑏,𝑣,𝑥,𝑦,𝑤,𝑧   𝑥,𝐶,𝑤   𝜑,𝑏,𝑤,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑣)   𝐶(𝑦,𝑧,𝑣,𝑏)

Proof of Theorem supmullem1
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 vex 3175 . . . 4 𝑤 ∈ V
2 oveq1 6534 . . . . . . . 8 (𝑣 = 𝑎 → (𝑣 · 𝑏) = (𝑎 · 𝑏))
32eqeq2d 2619 . . . . . . 7 (𝑣 = 𝑎 → (𝑧 = (𝑣 · 𝑏) ↔ 𝑧 = (𝑎 · 𝑏)))
43rexbidv 3033 . . . . . 6 (𝑣 = 𝑎 → (∃𝑏𝐵 𝑧 = (𝑣 · 𝑏) ↔ ∃𝑏𝐵 𝑧 = (𝑎 · 𝑏)))
54cbvrexv 3147 . . . . 5 (∃𝑣𝐴𝑏𝐵 𝑧 = (𝑣 · 𝑏) ↔ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 · 𝑏))
6 eqeq1 2613 . . . . . 6 (𝑧 = 𝑤 → (𝑧 = (𝑎 · 𝑏) ↔ 𝑤 = (𝑎 · 𝑏)))
762rexbidv 3038 . . . . 5 (𝑧 = 𝑤 → (∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 · 𝑏) ↔ ∃𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏)))
85, 7syl5bb 270 . . . 4 (𝑧 = 𝑤 → (∃𝑣𝐴𝑏𝐵 𝑧 = (𝑣 · 𝑏) ↔ ∃𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏)))
9 supmul.1 . . . 4 𝐶 = {𝑧 ∣ ∃𝑣𝐴𝑏𝐵 𝑧 = (𝑣 · 𝑏)}
101, 8, 9elab2 3322 . . 3 (𝑤𝐶 ↔ ∃𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏))
11 supmul.2 . . . . . . . . . . 11 (𝜑 ↔ ((∀𝑥𝐴 0 ≤ 𝑥 ∧ ∀𝑥𝐵 0 ≤ 𝑥) ∧ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥)))
1211simp2bi 1069 . . . . . . . . . 10 (𝜑 → (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
1312simp1d 1065 . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ)
1413sselda 3567 . . . . . . . 8 ((𝜑𝑎𝐴) → 𝑎 ∈ ℝ)
1514adantrr 748 . . . . . . 7 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → 𝑎 ∈ ℝ)
16 suprcl 10832 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ∈ ℝ)
1712, 16syl 17 . . . . . . . 8 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ)
1817adantr 479 . . . . . . 7 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → sup(𝐴, ℝ, < ) ∈ ℝ)
1911simp3bi 1070 . . . . . . . . . 10 (𝜑 → (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥))
2019simp1d 1065 . . . . . . . . 9 (𝜑𝐵 ⊆ ℝ)
2120sselda 3567 . . . . . . . 8 ((𝜑𝑏𝐵) → 𝑏 ∈ ℝ)
2221adantrl 747 . . . . . . 7 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → 𝑏 ∈ ℝ)
23 suprcl 10832 . . . . . . . . 9 ((𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥) → sup(𝐵, ℝ, < ) ∈ ℝ)
2419, 23syl 17 . . . . . . . 8 (𝜑 → sup(𝐵, ℝ, < ) ∈ ℝ)
2524adantr 479 . . . . . . 7 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → sup(𝐵, ℝ, < ) ∈ ℝ)
26 simp1l 1077 . . . . . . . . . . 11 (((∀𝑥𝐴 0 ≤ 𝑥 ∧ ∀𝑥𝐵 0 ≤ 𝑥) ∧ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥)) → ∀𝑥𝐴 0 ≤ 𝑥)
2711, 26sylbi 205 . . . . . . . . . 10 (𝜑 → ∀𝑥𝐴 0 ≤ 𝑥)
28 breq2 4581 . . . . . . . . . . 11 (𝑥 = 𝑎 → (0 ≤ 𝑥 ↔ 0 ≤ 𝑎))
2928rspccv 3278 . . . . . . . . . 10 (∀𝑥𝐴 0 ≤ 𝑥 → (𝑎𝐴 → 0 ≤ 𝑎))
3027, 29syl 17 . . . . . . . . 9 (𝜑 → (𝑎𝐴 → 0 ≤ 𝑎))
3130imp 443 . . . . . . . 8 ((𝜑𝑎𝐴) → 0 ≤ 𝑎)
3231adantrr 748 . . . . . . 7 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → 0 ≤ 𝑎)
33 simp1r 1078 . . . . . . . . . . 11 (((∀𝑥𝐴 0 ≤ 𝑥 ∧ ∀𝑥𝐵 0 ≤ 𝑥) ∧ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥)) → ∀𝑥𝐵 0 ≤ 𝑥)
3411, 33sylbi 205 . . . . . . . . . 10 (𝜑 → ∀𝑥𝐵 0 ≤ 𝑥)
35 breq2 4581 . . . . . . . . . . 11 (𝑥 = 𝑏 → (0 ≤ 𝑥 ↔ 0 ≤ 𝑏))
3635rspccv 3278 . . . . . . . . . 10 (∀𝑥𝐵 0 ≤ 𝑥 → (𝑏𝐵 → 0 ≤ 𝑏))
3734, 36syl 17 . . . . . . . . 9 (𝜑 → (𝑏𝐵 → 0 ≤ 𝑏))
3837imp 443 . . . . . . . 8 ((𝜑𝑏𝐵) → 0 ≤ 𝑏)
3938adantrl 747 . . . . . . 7 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → 0 ≤ 𝑏)
40 suprub 10833 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝑎𝐴) → 𝑎 ≤ sup(𝐴, ℝ, < ))
4112, 40sylan 486 . . . . . . . 8 ((𝜑𝑎𝐴) → 𝑎 ≤ sup(𝐴, ℝ, < ))
4241adantrr 748 . . . . . . 7 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → 𝑎 ≤ sup(𝐴, ℝ, < ))
43 suprub 10833 . . . . . . . . 9 (((𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥) ∧ 𝑏𝐵) → 𝑏 ≤ sup(𝐵, ℝ, < ))
4419, 43sylan 486 . . . . . . . 8 ((𝜑𝑏𝐵) → 𝑏 ≤ sup(𝐵, ℝ, < ))
4544adantrl 747 . . . . . . 7 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → 𝑏 ≤ sup(𝐵, ℝ, < ))
4615, 18, 22, 25, 32, 39, 42, 45lemul12ad 10815 . . . . . 6 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → (𝑎 · 𝑏) ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )))
4746ex 448 . . . . 5 (𝜑 → ((𝑎𝐴𝑏𝐵) → (𝑎 · 𝑏) ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < ))))
48 breq1 4580 . . . . . 6 (𝑤 = (𝑎 · 𝑏) → (𝑤 ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )) ↔ (𝑎 · 𝑏) ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < ))))
4948biimprcd 238 . . . . 5 ((𝑎 · 𝑏) ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )) → (𝑤 = (𝑎 · 𝑏) → 𝑤 ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < ))))
5047, 49syl6 34 . . . 4 (𝜑 → ((𝑎𝐴𝑏𝐵) → (𝑤 = (𝑎 · 𝑏) → 𝑤 ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )))))
5150rexlimdvv 3018 . . 3 (𝜑 → (∃𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏) → 𝑤 ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < ))))
5210, 51syl5bi 230 . 2 (𝜑 → (𝑤𝐶𝑤 ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < ))))
5352ralrimiv 2947 1 (𝜑 → ∀𝑤𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976  {cab 2595  wne 2779  wral 2895  wrex 2896  wss 3539  c0 3873   class class class wbr 4577  (class class class)co 6527  supcsup 8206  cr 9791  0cc0 9792   · cmul 9797   < clt 9930  cle 9931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-po 4949  df-so 4950  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-sup 8208  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120
This theorem is referenced by:  supmullem2  10841  supmul  10842
  Copyright terms: Public domain W3C validator