MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppfnss Structured version   Visualization version   GIF version

Theorem suppfnss 7858
Description: The support of a function which has the same zero values (in its domain) as another function is a subset of the support of this other function. (Contributed by AV, 30-Apr-2019.) (Proof shortened by AV, 6-Jun-2022.)
Assertion
Ref Expression
suppfnss (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → (∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝑥,𝑍
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem suppfnss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpr1 1190 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → 𝐴𝐵)
2 fndm 6458 . . . . . . 7 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
32ad2antrr 724 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → dom 𝐹 = 𝐴)
4 fndm 6458 . . . . . . 7 (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵)
54ad2antlr 725 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → dom 𝐺 = 𝐵)
61, 3, 53sstr4d 4017 . . . . 5 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → dom 𝐹 ⊆ dom 𝐺)
76adantr 483 . . . 4 ((((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) ∧ ∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍)) → dom 𝐹 ⊆ dom 𝐺)
82eleq2d 2901 . . . . . . . . . . . 12 (𝐹 Fn 𝐴 → (𝑦 ∈ dom 𝐹𝑦𝐴))
98ad2antrr 724 . . . . . . . . . . 11 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → (𝑦 ∈ dom 𝐹𝑦𝐴))
10 fveqeq2 6682 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝐺𝑥) = 𝑍 ↔ (𝐺𝑦) = 𝑍))
11 fveqeq2 6682 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝐹𝑥) = 𝑍 ↔ (𝐹𝑦) = 𝑍))
1210, 11imbi12d 347 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍) ↔ ((𝐺𝑦) = 𝑍 → (𝐹𝑦) = 𝑍)))
1312rspcv 3621 . . . . . . . . . . 11 (𝑦𝐴 → (∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍) → ((𝐺𝑦) = 𝑍 → (𝐹𝑦) = 𝑍)))
149, 13syl6bi 255 . . . . . . . . . 10 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → (𝑦 ∈ dom 𝐹 → (∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍) → ((𝐺𝑦) = 𝑍 → (𝐹𝑦) = 𝑍))))
1514com23 86 . . . . . . . . 9 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → (∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍) → (𝑦 ∈ dom 𝐹 → ((𝐺𝑦) = 𝑍 → (𝐹𝑦) = 𝑍))))
1615imp31 420 . . . . . . . 8 (((((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) ∧ ∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍)) ∧ 𝑦 ∈ dom 𝐹) → ((𝐺𝑦) = 𝑍 → (𝐹𝑦) = 𝑍))
1716necon3d 3040 . . . . . . 7 (((((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) ∧ ∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍)) ∧ 𝑦 ∈ dom 𝐹) → ((𝐹𝑦) ≠ 𝑍 → (𝐺𝑦) ≠ 𝑍))
1817ex 415 . . . . . 6 ((((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) ∧ ∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍)) → (𝑦 ∈ dom 𝐹 → ((𝐹𝑦) ≠ 𝑍 → (𝐺𝑦) ≠ 𝑍)))
1918com23 86 . . . . 5 ((((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) ∧ ∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍)) → ((𝐹𝑦) ≠ 𝑍 → (𝑦 ∈ dom 𝐹 → (𝐺𝑦) ≠ 𝑍)))
20193imp 1107 . . . 4 (((((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) ∧ ∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍)) ∧ (𝐹𝑦) ≠ 𝑍𝑦 ∈ dom 𝐹) → (𝐺𝑦) ≠ 𝑍)
217, 20rabssrabd 4061 . . 3 ((((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) ∧ ∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍)) → {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ≠ 𝑍} ⊆ {𝑦 ∈ dom 𝐺 ∣ (𝐺𝑦) ≠ 𝑍})
22 fnfun 6456 . . . . . . 7 (𝐹 Fn 𝐴 → Fun 𝐹)
2322ad2antrr 724 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → Fun 𝐹)
24 simpl 485 . . . . . . 7 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → 𝐹 Fn 𝐴)
25 ssexg 5230 . . . . . . . 8 ((𝐴𝐵𝐵𝑉) → 𝐴 ∈ V)
26253adant3 1128 . . . . . . 7 ((𝐴𝐵𝐵𝑉𝑍𝑊) → 𝐴 ∈ V)
27 fnex 6983 . . . . . . 7 ((𝐹 Fn 𝐴𝐴 ∈ V) → 𝐹 ∈ V)
2824, 26, 27syl2an 597 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → 𝐹 ∈ V)
29 simpr3 1192 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → 𝑍𝑊)
30 suppval1 7839 . . . . . 6 ((Fun 𝐹𝐹 ∈ V ∧ 𝑍𝑊) → (𝐹 supp 𝑍) = {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ≠ 𝑍})
3123, 28, 29, 30syl3anc 1367 . . . . 5 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → (𝐹 supp 𝑍) = {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ≠ 𝑍})
32 fnfun 6456 . . . . . . 7 (𝐺 Fn 𝐵 → Fun 𝐺)
3332ad2antlr 725 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → Fun 𝐺)
34 simpr 487 . . . . . . 7 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → 𝐺 Fn 𝐵)
35 simp2 1133 . . . . . . 7 ((𝐴𝐵𝐵𝑉𝑍𝑊) → 𝐵𝑉)
36 fnex 6983 . . . . . . 7 ((𝐺 Fn 𝐵𝐵𝑉) → 𝐺 ∈ V)
3734, 35, 36syl2an 597 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → 𝐺 ∈ V)
38 suppval1 7839 . . . . . 6 ((Fun 𝐺𝐺 ∈ V ∧ 𝑍𝑊) → (𝐺 supp 𝑍) = {𝑦 ∈ dom 𝐺 ∣ (𝐺𝑦) ≠ 𝑍})
3933, 37, 29, 38syl3anc 1367 . . . . 5 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → (𝐺 supp 𝑍) = {𝑦 ∈ dom 𝐺 ∣ (𝐺𝑦) ≠ 𝑍})
4031, 39sseq12d 4003 . . . 4 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → ((𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍) ↔ {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ≠ 𝑍} ⊆ {𝑦 ∈ dom 𝐺 ∣ (𝐺𝑦) ≠ 𝑍}))
4140adantr 483 . . 3 ((((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) ∧ ∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍)) → ((𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍) ↔ {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ≠ 𝑍} ⊆ {𝑦 ∈ dom 𝐺 ∣ (𝐺𝑦) ≠ 𝑍}))
4221, 41mpbird 259 . 2 ((((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) ∧ ∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍)) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍))
4342ex 415 1 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → (∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wne 3019  wral 3141  {crab 3145  Vcvv 3497  wss 3939  dom cdm 5558  Fun wfun 6352   Fn wfn 6353  cfv 6358  (class class class)co 7159   supp csupp 7833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-supp 7834
This theorem is referenced by:  funsssuppss  7859  suppofss1d  7871  suppofss2d  7872  lincresunit2  44540
  Copyright terms: Public domain W3C validator