Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suppmptcfin Structured version   Visualization version   GIF version

Theorem suppmptcfin 41445
 Description: The support of a mapping with value 0 except of one is finite. (Contributed by AV, 27-Apr-2019.)
Hypotheses
Ref Expression
suppmptcfin.b 𝐵 = (Base‘𝑀)
suppmptcfin.r 𝑅 = (Scalar‘𝑀)
suppmptcfin.0 0 = (0g𝑅)
suppmptcfin.1 1 = (1r𝑅)
suppmptcfin.f 𝐹 = (𝑥𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 ))
Assertion
Ref Expression
suppmptcfin ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹 supp 0 ) ∈ Fin)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝑀   𝑥,𝑉   𝑥,𝑋   𝑥, 1   𝑥, 0
Allowed substitution hint:   𝑅(𝑥)

Proof of Theorem suppmptcfin
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 suppmptcfin.f . . . 4 𝐹 = (𝑥𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 ))
2 eqeq1 2625 . . . . . 6 (𝑥 = 𝑣 → (𝑥 = 𝑋𝑣 = 𝑋))
32ifbid 4080 . . . . 5 (𝑥 = 𝑣 → if(𝑥 = 𝑋, 1 , 0 ) = if(𝑣 = 𝑋, 1 , 0 ))
43cbvmptv 4710 . . . 4 (𝑥𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 )) = (𝑣𝑉 ↦ if(𝑣 = 𝑋, 1 , 0 ))
51, 4eqtri 2643 . . 3 𝐹 = (𝑣𝑉 ↦ if(𝑣 = 𝑋, 1 , 0 ))
6 simp2 1060 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑉 ∈ 𝒫 𝐵)
7 suppmptcfin.0 . . . . 5 0 = (0g𝑅)
8 fvex 6158 . . . . 5 (0g𝑅) ∈ V
97, 8eqeltri 2694 . . . 4 0 ∈ V
109a1i 11 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 0 ∈ V)
11 suppmptcfin.1 . . . . . 6 1 = (1r𝑅)
12 fvex 6158 . . . . . 6 (1r𝑅) ∈ V
1311, 12eqeltri 2694 . . . . 5 1 ∈ V
1413a1i 11 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → 1 ∈ V)
159a1i 11 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → 0 ∈ V)
1614, 15ifcld 4103 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → if(𝑣 = 𝑋, 1 , 0 ) ∈ V)
175, 6, 10, 16mptsuppd 7263 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹 supp 0 ) = {𝑣𝑉 ∣ if(𝑣 = 𝑋, 1 , 0 ) ≠ 0 })
18 snfi 7982 . . 3 {𝑋} ∈ Fin
19 2a1 28 . . . . . 6 (𝑣 = 𝑋 → (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → (if(𝑣 = 𝑋, 1 , 0 ) ≠ 0𝑣 = 𝑋)))
20 iffalse 4067 . . . . . . . . . 10 𝑣 = 𝑋 → if(𝑣 = 𝑋, 1 , 0 ) = 0 )
2120adantr 481 . . . . . . . . 9 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → if(𝑣 = 𝑋, 1 , 0 ) = 0 )
2221neeq1d 2849 . . . . . . . 8 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → (if(𝑣 = 𝑋, 1 , 0 ) ≠ 000 ))
23 eqid 2621 . . . . . . . . 9 0 = 0
24 eqneqall 2801 . . . . . . . . 9 ( 0 = 0 → ( 00𝑣 = 𝑋))
2523, 24ax-mp 5 . . . . . . . 8 ( 00𝑣 = 𝑋)
2622, 25syl6bi 243 . . . . . . 7 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → (if(𝑣 = 𝑋, 1 , 0 ) ≠ 0𝑣 = 𝑋))
2726ex 450 . . . . . 6 𝑣 = 𝑋 → (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → (if(𝑣 = 𝑋, 1 , 0 ) ≠ 0𝑣 = 𝑋)))
2819, 27pm2.61i 176 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → (if(𝑣 = 𝑋, 1 , 0 ) ≠ 0𝑣 = 𝑋))
2928ralrimiva 2960 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → ∀𝑣𝑉 (if(𝑣 = 𝑋, 1 , 0 ) ≠ 0𝑣 = 𝑋))
30 rabsssn 4186 . . . 4 ({𝑣𝑉 ∣ if(𝑣 = 𝑋, 1 , 0 ) ≠ 0 } ⊆ {𝑋} ↔ ∀𝑣𝑉 (if(𝑣 = 𝑋, 1 , 0 ) ≠ 0𝑣 = 𝑋))
3129, 30sylibr 224 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → {𝑣𝑉 ∣ if(𝑣 = 𝑋, 1 , 0 ) ≠ 0 } ⊆ {𝑋})
32 ssfi 8124 . . 3 (({𝑋} ∈ Fin ∧ {𝑣𝑉 ∣ if(𝑣 = 𝑋, 1 , 0 ) ≠ 0 } ⊆ {𝑋}) → {𝑣𝑉 ∣ if(𝑣 = 𝑋, 1 , 0 ) ≠ 0 } ∈ Fin)
3318, 31, 32sylancr 694 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → {𝑣𝑉 ∣ if(𝑣 = 𝑋, 1 , 0 ) ≠ 0 } ∈ Fin)
3417, 33eqeltrd 2698 1 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹 supp 0 ) ∈ Fin)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  ∀wral 2907  {crab 2911  Vcvv 3186   ⊆ wss 3555  ifcif 4058  𝒫 cpw 4130  {csn 4148   ↦ cmpt 4673  ‘cfv 5847  (class class class)co 6604   supp csupp 7240  Fincfn 7899  Basecbs 15781  Scalarcsca 15865  0gc0g 16021  1rcur 18422  LModclmod 18784 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-supp 7241  df-1o 7505  df-er 7687  df-en 7900  df-fin 7903 This theorem is referenced by:  mptcfsupp  41446
 Copyright terms: Public domain W3C validator