MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppofss2d Structured version   Visualization version   GIF version

Theorem suppofss2d 7863
Description: Condition for the support of a function operation to be a subset of the support of the right function term. (Contributed by Thierry Arnoux, 21-Jun-2019.)
Hypotheses
Ref Expression
suppofssd.1 (𝜑𝐴𝑉)
suppofssd.2 (𝜑𝑍𝐵)
suppofssd.3 (𝜑𝐹:𝐴𝐵)
suppofssd.4 (𝜑𝐺:𝐴𝐵)
suppofss2d.5 ((𝜑𝑥𝐵) → (𝑥𝑋𝑍) = 𝑍)
Assertion
Ref Expression
suppofss2d (𝜑 → ((𝐹f 𝑋𝐺) supp 𝑍) ⊆ (𝐺 supp 𝑍))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝑥,𝑋   𝑥,𝑍   𝜑,𝑥
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem suppofss2d
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 suppofssd.3 . . . . . . . 8 (𝜑𝐹:𝐴𝐵)
21ffnd 6510 . . . . . . 7 (𝜑𝐹 Fn 𝐴)
3 suppofssd.4 . . . . . . . 8 (𝜑𝐺:𝐴𝐵)
43ffnd 6510 . . . . . . 7 (𝜑𝐺 Fn 𝐴)
5 suppofssd.1 . . . . . . 7 (𝜑𝐴𝑉)
6 inidm 4195 . . . . . . 7 (𝐴𝐴) = 𝐴
7 eqidd 2822 . . . . . . 7 ((𝜑𝑦𝐴) → (𝐹𝑦) = (𝐹𝑦))
8 eqidd 2822 . . . . . . 7 ((𝜑𝑦𝐴) → (𝐺𝑦) = (𝐺𝑦))
92, 4, 5, 5, 6, 7, 8ofval 7412 . . . . . 6 ((𝜑𝑦𝐴) → ((𝐹f 𝑋𝐺)‘𝑦) = ((𝐹𝑦)𝑋(𝐺𝑦)))
109adantr 483 . . . . 5 (((𝜑𝑦𝐴) ∧ (𝐺𝑦) = 𝑍) → ((𝐹f 𝑋𝐺)‘𝑦) = ((𝐹𝑦)𝑋(𝐺𝑦)))
11 simpr 487 . . . . . 6 (((𝜑𝑦𝐴) ∧ (𝐺𝑦) = 𝑍) → (𝐺𝑦) = 𝑍)
1211oveq2d 7166 . . . . 5 (((𝜑𝑦𝐴) ∧ (𝐺𝑦) = 𝑍) → ((𝐹𝑦)𝑋(𝐺𝑦)) = ((𝐹𝑦)𝑋𝑍))
13 suppofss2d.5 . . . . . . . . 9 ((𝜑𝑥𝐵) → (𝑥𝑋𝑍) = 𝑍)
1413ralrimiva 3182 . . . . . . . 8 (𝜑 → ∀𝑥𝐵 (𝑥𝑋𝑍) = 𝑍)
1514adantr 483 . . . . . . 7 ((𝜑𝑦𝐴) → ∀𝑥𝐵 (𝑥𝑋𝑍) = 𝑍)
161ffvelrnda 6846 . . . . . . . 8 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ 𝐵)
17 simpr 487 . . . . . . . . . 10 (((𝜑𝑦𝐴) ∧ 𝑥 = (𝐹𝑦)) → 𝑥 = (𝐹𝑦))
1817oveq1d 7165 . . . . . . . . 9 (((𝜑𝑦𝐴) ∧ 𝑥 = (𝐹𝑦)) → (𝑥𝑋𝑍) = ((𝐹𝑦)𝑋𝑍))
1918eqeq1d 2823 . . . . . . . 8 (((𝜑𝑦𝐴) ∧ 𝑥 = (𝐹𝑦)) → ((𝑥𝑋𝑍) = 𝑍 ↔ ((𝐹𝑦)𝑋𝑍) = 𝑍))
2016, 19rspcdv 3615 . . . . . . 7 ((𝜑𝑦𝐴) → (∀𝑥𝐵 (𝑥𝑋𝑍) = 𝑍 → ((𝐹𝑦)𝑋𝑍) = 𝑍))
2115, 20mpd 15 . . . . . 6 ((𝜑𝑦𝐴) → ((𝐹𝑦)𝑋𝑍) = 𝑍)
2221adantr 483 . . . . 5 (((𝜑𝑦𝐴) ∧ (𝐺𝑦) = 𝑍) → ((𝐹𝑦)𝑋𝑍) = 𝑍)
2310, 12, 223eqtrd 2860 . . . 4 (((𝜑𝑦𝐴) ∧ (𝐺𝑦) = 𝑍) → ((𝐹f 𝑋𝐺)‘𝑦) = 𝑍)
2423ex 415 . . 3 ((𝜑𝑦𝐴) → ((𝐺𝑦) = 𝑍 → ((𝐹f 𝑋𝐺)‘𝑦) = 𝑍))
2524ralrimiva 3182 . 2 (𝜑 → ∀𝑦𝐴 ((𝐺𝑦) = 𝑍 → ((𝐹f 𝑋𝐺)‘𝑦) = 𝑍))
262, 4, 5, 5, 6offn 7414 . . 3 (𝜑 → (𝐹f 𝑋𝐺) Fn 𝐴)
27 ssidd 3990 . . 3 (𝜑𝐴𝐴)
28 suppofssd.2 . . 3 (𝜑𝑍𝐵)
29 suppfnss 7849 . . 3 ((((𝐹f 𝑋𝐺) Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐴𝐴𝐴𝑉𝑍𝐵)) → (∀𝑦𝐴 ((𝐺𝑦) = 𝑍 → ((𝐹f 𝑋𝐺)‘𝑦) = 𝑍) → ((𝐹f 𝑋𝐺) supp 𝑍) ⊆ (𝐺 supp 𝑍)))
3026, 4, 27, 5, 28, 29syl23anc 1373 . 2 (𝜑 → (∀𝑦𝐴 ((𝐺𝑦) = 𝑍 → ((𝐹f 𝑋𝐺)‘𝑦) = 𝑍) → ((𝐹f 𝑋𝐺) supp 𝑍) ⊆ (𝐺 supp 𝑍)))
3125, 30mpd 15 1 (𝜑 → ((𝐹f 𝑋𝐺) supp 𝑍) ⊆ (𝐺 supp 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wral 3138  wss 3936   Fn wfn 6345  wf 6346  cfv 6350  (class class class)co 7150  f cof 7401   supp csupp 7824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-supp 7825
This theorem is referenced by:  frlmphl  20919
  Copyright terms: Public domain W3C validator