MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppsnop Structured version   Visualization version   GIF version

Theorem suppsnop 7838
Description: The support of a singleton of an ordered pair. (Contributed by AV, 12-Apr-2019.)
Hypothesis
Ref Expression
suppsnop.f 𝐹 = {⟨𝑋, 𝑌⟩}
Assertion
Ref Expression
suppsnop ((𝑋𝑉𝑌𝑊𝑍𝑈) → (𝐹 supp 𝑍) = if(𝑌 = 𝑍, ∅, {𝑋}))

Proof of Theorem suppsnop
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 f1osng 6650 . . . . . . 7 ((𝑋𝑉𝑌𝑊) → {⟨𝑋, 𝑌⟩}:{𝑋}–1-1-onto→{𝑌})
2 f1of 6610 . . . . . . 7 ({⟨𝑋, 𝑌⟩}:{𝑋}–1-1-onto→{𝑌} → {⟨𝑋, 𝑌⟩}:{𝑋}⟶{𝑌})
31, 2syl 17 . . . . . 6 ((𝑋𝑉𝑌𝑊) → {⟨𝑋, 𝑌⟩}:{𝑋}⟶{𝑌})
433adant3 1128 . . . . 5 ((𝑋𝑉𝑌𝑊𝑍𝑈) → {⟨𝑋, 𝑌⟩}:{𝑋}⟶{𝑌})
5 suppsnop.f . . . . . 6 𝐹 = {⟨𝑋, 𝑌⟩}
65feq1i 6500 . . . . 5 (𝐹:{𝑋}⟶{𝑌} ↔ {⟨𝑋, 𝑌⟩}:{𝑋}⟶{𝑌})
74, 6sylibr 236 . . . 4 ((𝑋𝑉𝑌𝑊𝑍𝑈) → 𝐹:{𝑋}⟶{𝑌})
8 snex 5324 . . . 4 {𝑋} ∈ V
9 fex 6983 . . . 4 ((𝐹:{𝑋}⟶{𝑌} ∧ {𝑋} ∈ V) → 𝐹 ∈ V)
107, 8, 9sylancl 588 . . 3 ((𝑋𝑉𝑌𝑊𝑍𝑈) → 𝐹 ∈ V)
11 simp3 1134 . . 3 ((𝑋𝑉𝑌𝑊𝑍𝑈) → 𝑍𝑈)
12 suppval 7826 . . 3 ((𝐹 ∈ V ∧ 𝑍𝑈) → (𝐹 supp 𝑍) = {𝑥 ∈ dom 𝐹 ∣ (𝐹 “ {𝑥}) ≠ {𝑍}})
1310, 11, 12syl2anc 586 . 2 ((𝑋𝑉𝑌𝑊𝑍𝑈) → (𝐹 supp 𝑍) = {𝑥 ∈ dom 𝐹 ∣ (𝐹 “ {𝑥}) ≠ {𝑍}})
147fdmd 6518 . . . 4 ((𝑋𝑉𝑌𝑊𝑍𝑈) → dom 𝐹 = {𝑋})
1514rabeqdv 3485 . . 3 ((𝑋𝑉𝑌𝑊𝑍𝑈) → {𝑥 ∈ dom 𝐹 ∣ (𝐹 “ {𝑥}) ≠ {𝑍}} = {𝑥 ∈ {𝑋} ∣ (𝐹 “ {𝑥}) ≠ {𝑍}})
16 sneq 4571 . . . . . 6 (𝑥 = 𝑋 → {𝑥} = {𝑋})
1716imaeq2d 5924 . . . . 5 (𝑥 = 𝑋 → (𝐹 “ {𝑥}) = (𝐹 “ {𝑋}))
1817neeq1d 3075 . . . 4 (𝑥 = 𝑋 → ((𝐹 “ {𝑥}) ≠ {𝑍} ↔ (𝐹 “ {𝑋}) ≠ {𝑍}))
1918rabsnif 4653 . . 3 {𝑥 ∈ {𝑋} ∣ (𝐹 “ {𝑥}) ≠ {𝑍}} = if((𝐹 “ {𝑋}) ≠ {𝑍}, {𝑋}, ∅)
2015, 19syl6eq 2872 . 2 ((𝑋𝑉𝑌𝑊𝑍𝑈) → {𝑥 ∈ dom 𝐹 ∣ (𝐹 “ {𝑥}) ≠ {𝑍}} = if((𝐹 “ {𝑋}) ≠ {𝑍}, {𝑋}, ∅))
217ffnd 6510 . . . . . . 7 ((𝑋𝑉𝑌𝑊𝑍𝑈) → 𝐹 Fn {𝑋})
22 snidg 4593 . . . . . . . 8 (𝑋𝑉𝑋 ∈ {𝑋})
23223ad2ant1 1129 . . . . . . 7 ((𝑋𝑉𝑌𝑊𝑍𝑈) → 𝑋 ∈ {𝑋})
24 fnsnfv 6738 . . . . . . . 8 ((𝐹 Fn {𝑋} ∧ 𝑋 ∈ {𝑋}) → {(𝐹𝑋)} = (𝐹 “ {𝑋}))
2524eqcomd 2827 . . . . . . 7 ((𝐹 Fn {𝑋} ∧ 𝑋 ∈ {𝑋}) → (𝐹 “ {𝑋}) = {(𝐹𝑋)})
2621, 23, 25syl2anc 586 . . . . . 6 ((𝑋𝑉𝑌𝑊𝑍𝑈) → (𝐹 “ {𝑋}) = {(𝐹𝑋)})
2726neeq1d 3075 . . . . 5 ((𝑋𝑉𝑌𝑊𝑍𝑈) → ((𝐹 “ {𝑋}) ≠ {𝑍} ↔ {(𝐹𝑋)} ≠ {𝑍}))
285fveq1i 6666 . . . . . . . 8 (𝐹𝑋) = ({⟨𝑋, 𝑌⟩}‘𝑋)
29 fvsng 6937 . . . . . . . . 9 ((𝑋𝑉𝑌𝑊) → ({⟨𝑋, 𝑌⟩}‘𝑋) = 𝑌)
30293adant3 1128 . . . . . . . 8 ((𝑋𝑉𝑌𝑊𝑍𝑈) → ({⟨𝑋, 𝑌⟩}‘𝑋) = 𝑌)
3128, 30syl5eq 2868 . . . . . . 7 ((𝑋𝑉𝑌𝑊𝑍𝑈) → (𝐹𝑋) = 𝑌)
3231sneqd 4573 . . . . . 6 ((𝑋𝑉𝑌𝑊𝑍𝑈) → {(𝐹𝑋)} = {𝑌})
3332neeq1d 3075 . . . . 5 ((𝑋𝑉𝑌𝑊𝑍𝑈) → ({(𝐹𝑋)} ≠ {𝑍} ↔ {𝑌} ≠ {𝑍}))
34 sneqbg 4768 . . . . . . 7 (𝑌𝑊 → ({𝑌} = {𝑍} ↔ 𝑌 = 𝑍))
35343ad2ant2 1130 . . . . . 6 ((𝑋𝑉𝑌𝑊𝑍𝑈) → ({𝑌} = {𝑍} ↔ 𝑌 = 𝑍))
3635necon3abid 3052 . . . . 5 ((𝑋𝑉𝑌𝑊𝑍𝑈) → ({𝑌} ≠ {𝑍} ↔ ¬ 𝑌 = 𝑍))
3727, 33, 363bitrd 307 . . . 4 ((𝑋𝑉𝑌𝑊𝑍𝑈) → ((𝐹 “ {𝑋}) ≠ {𝑍} ↔ ¬ 𝑌 = 𝑍))
3837ifbid 4489 . . 3 ((𝑋𝑉𝑌𝑊𝑍𝑈) → if((𝐹 “ {𝑋}) ≠ {𝑍}, {𝑋}, ∅) = if(¬ 𝑌 = 𝑍, {𝑋}, ∅))
39 ifnot 4517 . . 3 if(¬ 𝑌 = 𝑍, {𝑋}, ∅) = if(𝑌 = 𝑍, ∅, {𝑋})
4038, 39syl6eq 2872 . 2 ((𝑋𝑉𝑌𝑊𝑍𝑈) → if((𝐹 “ {𝑋}) ≠ {𝑍}, {𝑋}, ∅) = if(𝑌 = 𝑍, ∅, {𝑋}))
4113, 20, 403eqtrd 2860 1 ((𝑋𝑉𝑌𝑊𝑍𝑈) → (𝐹 supp 𝑍) = if(𝑌 = 𝑍, ∅, {𝑋}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  {crab 3142  Vcvv 3495  c0 4291  ifcif 4467  {csn 4561  cop 4567  dom cdm 5550  cima 5553   Fn wfn 6345  wf 6346  1-1-ontowf1o 6349  cfv 6350  (class class class)co 7150   supp csupp 7824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-ov 7153  df-oprab 7154  df-mpo 7155  df-supp 7825
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator