MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppssfv Structured version   Visualization version   GIF version

Theorem suppssfv 7869
Description: Formula building theorem for support restriction, on a function which preserves zero. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 28-May-2019.)
Hypotheses
Ref Expression
suppssfv.a (𝜑 → ((𝑥𝐷𝐴) supp 𝑌) ⊆ 𝐿)
suppssfv.f (𝜑 → (𝐹𝑌) = 𝑍)
suppssfv.v ((𝜑𝑥𝐷) → 𝐴𝑉)
suppssfv.y (𝜑𝑌𝑈)
Assertion
Ref Expression
suppssfv (𝜑 → ((𝑥𝐷 ↦ (𝐹𝐴)) supp 𝑍) ⊆ 𝐿)
Distinct variable groups:   𝜑,𝑥   𝑥,𝐷   𝑥,𝑌   𝑥,𝑍
Allowed substitution hints:   𝐴(𝑥)   𝑈(𝑥)   𝐹(𝑥)   𝐿(𝑥)   𝑉(𝑥)

Proof of Theorem suppssfv
StepHypRef Expression
1 eldifsni 4725 . . . . . . 7 ((𝐹𝐴) ∈ (V ∖ {𝑍}) → (𝐹𝐴) ≠ 𝑍)
2 suppssfv.v . . . . . . . . . . 11 ((𝜑𝑥𝐷) → 𝐴𝑉)
32elexd 3517 . . . . . . . . . 10 ((𝜑𝑥𝐷) → 𝐴 ∈ V)
43ad4ant23 751 . . . . . . . . 9 (((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) ∧ (𝐹𝐴) ≠ 𝑍) → 𝐴 ∈ V)
5 suppssfv.f . . . . . . . . . . . . 13 (𝜑 → (𝐹𝑌) = 𝑍)
6 fveqeq2 6682 . . . . . . . . . . . . 13 (𝐴 = 𝑌 → ((𝐹𝐴) = 𝑍 ↔ (𝐹𝑌) = 𝑍))
75, 6syl5ibrcom 249 . . . . . . . . . . . 12 (𝜑 → (𝐴 = 𝑌 → (𝐹𝐴) = 𝑍))
87necon3d 3040 . . . . . . . . . . 11 (𝜑 → ((𝐹𝐴) ≠ 𝑍𝐴𝑌))
98ad2antlr 725 . . . . . . . . . 10 ((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) → ((𝐹𝐴) ≠ 𝑍𝐴𝑌))
109imp 409 . . . . . . . . 9 (((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) ∧ (𝐹𝐴) ≠ 𝑍) → 𝐴𝑌)
11 eldifsn 4722 . . . . . . . . 9 (𝐴 ∈ (V ∖ {𝑌}) ↔ (𝐴 ∈ V ∧ 𝐴𝑌))
124, 10, 11sylanbrc 585 . . . . . . . 8 (((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) ∧ (𝐹𝐴) ≠ 𝑍) → 𝐴 ∈ (V ∖ {𝑌}))
1312ex 415 . . . . . . 7 ((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) → ((𝐹𝐴) ≠ 𝑍𝐴 ∈ (V ∖ {𝑌})))
141, 13syl5 34 . . . . . 6 ((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) → ((𝐹𝐴) ∈ (V ∖ {𝑍}) → 𝐴 ∈ (V ∖ {𝑌})))
1514ss2rabdv 4055 . . . . 5 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → {𝑥𝐷 ∣ (𝐹𝐴) ∈ (V ∖ {𝑍})} ⊆ {𝑥𝐷𝐴 ∈ (V ∖ {𝑌})})
16 eqid 2824 . . . . . 6 (𝑥𝐷 ↦ (𝐹𝐴)) = (𝑥𝐷 ↦ (𝐹𝐴))
17 simpll 765 . . . . . 6 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → 𝐷 ∈ V)
18 simplr 767 . . . . . 6 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → 𝑍 ∈ V)
1916, 17, 18mptsuppdifd 7855 . . . . 5 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝑥𝐷 ↦ (𝐹𝐴)) supp 𝑍) = {𝑥𝐷 ∣ (𝐹𝐴) ∈ (V ∖ {𝑍})})
20 eqid 2824 . . . . . 6 (𝑥𝐷𝐴) = (𝑥𝐷𝐴)
21 suppssfv.y . . . . . . 7 (𝜑𝑌𝑈)
2221adantl 484 . . . . . 6 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → 𝑌𝑈)
2320, 17, 22mptsuppdifd 7855 . . . . 5 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝑥𝐷𝐴) supp 𝑌) = {𝑥𝐷𝐴 ∈ (V ∖ {𝑌})})
2415, 19, 233sstr4d 4017 . . . 4 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝑥𝐷 ↦ (𝐹𝐴)) supp 𝑍) ⊆ ((𝑥𝐷𝐴) supp 𝑌))
25 suppssfv.a . . . . 5 (𝜑 → ((𝑥𝐷𝐴) supp 𝑌) ⊆ 𝐿)
2625adantl 484 . . . 4 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝑥𝐷𝐴) supp 𝑌) ⊆ 𝐿)
2724, 26sstrd 3980 . . 3 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝑥𝐷 ↦ (𝐹𝐴)) supp 𝑍) ⊆ 𝐿)
2827ex 415 . 2 ((𝐷 ∈ V ∧ 𝑍 ∈ V) → (𝜑 → ((𝑥𝐷 ↦ (𝐹𝐴)) supp 𝑍) ⊆ 𝐿))
29 mptexg 6987 . . . . . . 7 (𝐷 ∈ V → (𝑥𝐷 ↦ (𝐹𝐴)) ∈ V)
30 fvex 6686 . . . . . . . . . 10 (𝐹𝐴) ∈ V
3130rgenw 3153 . . . . . . . . 9 𝑥𝐷 (𝐹𝐴) ∈ V
32 dmmptg 6099 . . . . . . . . 9 (∀𝑥𝐷 (𝐹𝐴) ∈ V → dom (𝑥𝐷 ↦ (𝐹𝐴)) = 𝐷)
3331, 32ax-mp 5 . . . . . . . 8 dom (𝑥𝐷 ↦ (𝐹𝐴)) = 𝐷
34 dmexg 7616 . . . . . . . 8 ((𝑥𝐷 ↦ (𝐹𝐴)) ∈ V → dom (𝑥𝐷 ↦ (𝐹𝐴)) ∈ V)
3533, 34eqeltrrid 2921 . . . . . . 7 ((𝑥𝐷 ↦ (𝐹𝐴)) ∈ V → 𝐷 ∈ V)
3629, 35impbii 211 . . . . . 6 (𝐷 ∈ V ↔ (𝑥𝐷 ↦ (𝐹𝐴)) ∈ V)
3736anbi1i 625 . . . . 5 ((𝐷 ∈ V ∧ 𝑍 ∈ V) ↔ ((𝑥𝐷 ↦ (𝐹𝐴)) ∈ V ∧ 𝑍 ∈ V))
38 supp0prc 7836 . . . . 5 (¬ ((𝑥𝐷 ↦ (𝐹𝐴)) ∈ V ∧ 𝑍 ∈ V) → ((𝑥𝐷 ↦ (𝐹𝐴)) supp 𝑍) = ∅)
3937, 38sylnbi 332 . . . 4 (¬ (𝐷 ∈ V ∧ 𝑍 ∈ V) → ((𝑥𝐷 ↦ (𝐹𝐴)) supp 𝑍) = ∅)
40 0ss 4353 . . . 4 ∅ ⊆ 𝐿
4139, 40eqsstrdi 4024 . . 3 (¬ (𝐷 ∈ V ∧ 𝑍 ∈ V) → ((𝑥𝐷 ↦ (𝐹𝐴)) supp 𝑍) ⊆ 𝐿)
4241a1d 25 . 2 (¬ (𝐷 ∈ V ∧ 𝑍 ∈ V) → (𝜑 → ((𝑥𝐷 ↦ (𝐹𝐴)) supp 𝑍) ⊆ 𝐿))
4328, 42pm2.61i 184 1 (𝜑 → ((𝑥𝐷 ↦ (𝐹𝐴)) supp 𝑍) ⊆ 𝐿)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1536  wcel 2113  wne 3019  wral 3141  {crab 3145  Vcvv 3497  cdif 3936  wss 3939  c0 4294  {csn 4570  cmpt 5149  dom cdm 5558  cfv 6358  (class class class)co 7159   supp csupp 7833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-supp 7834
This theorem is referenced by:  evlslem2  20295  evlslem6  20297
  Copyright terms: Public domain W3C validator