MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppssfz Structured version   Visualization version   GIF version

Theorem suppssfz 13356
Description: Condition for a function over the nonnegative integers to have a support contained in a finite set of sequential integers. (Contributed by AV, 9-Oct-2019.)
Hypotheses
Ref Expression
suppssfz.z (𝜑𝑍𝑉)
suppssfz.f (𝜑𝐹 ∈ (𝐵m0))
suppssfz.s (𝜑𝑆 ∈ ℕ0)
suppssfz.b (𝜑 → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍))
Assertion
Ref Expression
suppssfz (𝜑 → (𝐹 supp 𝑍) ⊆ (0...𝑆))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑆   𝑥,𝑍
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem suppssfz
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 suppssfz.b . 2 (𝜑 → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍))
2 suppssfz.f . . . . . . . 8 (𝜑𝐹 ∈ (𝐵m0))
3 elmapfn 8423 . . . . . . . 8 (𝐹 ∈ (𝐵m0) → 𝐹 Fn ℕ0)
42, 3syl 17 . . . . . . 7 (𝜑𝐹 Fn ℕ0)
5 nn0ex 11897 . . . . . . . 8 0 ∈ V
65a1i 11 . . . . . . 7 (𝜑 → ℕ0 ∈ V)
7 suppssfz.z . . . . . . 7 (𝜑𝑍𝑉)
84, 6, 73jca 1124 . . . . . 6 (𝜑 → (𝐹 Fn ℕ0 ∧ ℕ0 ∈ V ∧ 𝑍𝑉))
98adantr 483 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍)) → (𝐹 Fn ℕ0 ∧ ℕ0 ∈ V ∧ 𝑍𝑉))
10 elsuppfn 7832 . . . . 5 ((𝐹 Fn ℕ0 ∧ ℕ0 ∈ V ∧ 𝑍𝑉) → (𝑛 ∈ (𝐹 supp 𝑍) ↔ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≠ 𝑍)))
119, 10syl 17 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍)) → (𝑛 ∈ (𝐹 supp 𝑍) ↔ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≠ 𝑍)))
12 breq2 5063 . . . . . . . . . . . . 13 (𝑥 = 𝑛 → (𝑆 < 𝑥𝑆 < 𝑛))
13 fveqeq2 6674 . . . . . . . . . . . . 13 (𝑥 = 𝑛 → ((𝐹𝑥) = 𝑍 ↔ (𝐹𝑛) = 𝑍))
1412, 13imbi12d 347 . . . . . . . . . . . 12 (𝑥 = 𝑛 → ((𝑆 < 𝑥 → (𝐹𝑥) = 𝑍) ↔ (𝑆 < 𝑛 → (𝐹𝑛) = 𝑍)))
1514rspcva 3621 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍)) → (𝑆 < 𝑛 → (𝐹𝑛) = 𝑍))
16 simplr 767 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ0) ∧ ¬ 𝑆 < 𝑛) → 𝑛 ∈ ℕ0)
17 suppssfz.s . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑆 ∈ ℕ0)
1817adantr 483 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ0) → 𝑆 ∈ ℕ0)
1918adantr 483 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ0) ∧ ¬ 𝑆 < 𝑛) → 𝑆 ∈ ℕ0)
20 nn0re 11900 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
21 nn0re 11900 . . . . . . . . . . . . . . . . . . . . 21 (𝑆 ∈ ℕ0𝑆 ∈ ℝ)
2217, 21syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑆 ∈ ℝ)
23 lenlt 10713 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℝ ∧ 𝑆 ∈ ℝ) → (𝑛𝑆 ↔ ¬ 𝑆 < 𝑛))
2420, 22, 23syl2anr 598 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ0) → (𝑛𝑆 ↔ ¬ 𝑆 < 𝑛))
2524biimpar 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ0) ∧ ¬ 𝑆 < 𝑛) → 𝑛𝑆)
26 elfz2nn0 12992 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (0...𝑆) ↔ (𝑛 ∈ ℕ0𝑆 ∈ ℕ0𝑛𝑆))
2716, 19, 25, 26syl3anbrc 1339 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ ¬ 𝑆 < 𝑛) → 𝑛 ∈ (0...𝑆))
2827a1d 25 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ ¬ 𝑆 < 𝑛) → ((𝐹𝑛) ≠ 𝑍𝑛 ∈ (0...𝑆)))
2928ex 415 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → (¬ 𝑆 < 𝑛 → ((𝐹𝑛) ≠ 𝑍𝑛 ∈ (0...𝑆))))
30 eqneqall 3027 . . . . . . . . . . . . . . . 16 ((𝐹𝑛) = 𝑍 → ((𝐹𝑛) ≠ 𝑍𝑛 ∈ (0...𝑆)))
3130a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → ((𝐹𝑛) = 𝑍 → ((𝐹𝑛) ≠ 𝑍𝑛 ∈ (0...𝑆))))
3229, 31jad 189 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → ((𝑆 < 𝑛 → (𝐹𝑛) = 𝑍) → ((𝐹𝑛) ≠ 𝑍𝑛 ∈ (0...𝑆))))
3332com23 86 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → ((𝐹𝑛) ≠ 𝑍 → ((𝑆 < 𝑛 → (𝐹𝑛) = 𝑍) → 𝑛 ∈ (0...𝑆))))
3433ex 415 . . . . . . . . . . . 12 (𝜑 → (𝑛 ∈ ℕ0 → ((𝐹𝑛) ≠ 𝑍 → ((𝑆 < 𝑛 → (𝐹𝑛) = 𝑍) → 𝑛 ∈ (0...𝑆)))))
3534com14 96 . . . . . . . . . . 11 ((𝑆 < 𝑛 → (𝐹𝑛) = 𝑍) → (𝑛 ∈ ℕ0 → ((𝐹𝑛) ≠ 𝑍 → (𝜑𝑛 ∈ (0...𝑆)))))
3615, 35syl 17 . . . . . . . . . 10 ((𝑛 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍)) → (𝑛 ∈ ℕ0 → ((𝐹𝑛) ≠ 𝑍 → (𝜑𝑛 ∈ (0...𝑆)))))
3736ex 415 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍) → (𝑛 ∈ ℕ0 → ((𝐹𝑛) ≠ 𝑍 → (𝜑𝑛 ∈ (0...𝑆))))))
3837pm2.43a 54 . . . . . . . 8 (𝑛 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍) → ((𝐹𝑛) ≠ 𝑍 → (𝜑𝑛 ∈ (0...𝑆)))))
3938com23 86 . . . . . . 7 (𝑛 ∈ ℕ0 → ((𝐹𝑛) ≠ 𝑍 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍) → (𝜑𝑛 ∈ (0...𝑆)))))
4039imp 409 . . . . . 6 ((𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≠ 𝑍) → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍) → (𝜑𝑛 ∈ (0...𝑆))))
4140com13 88 . . . . 5 (𝜑 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍) → ((𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≠ 𝑍) → 𝑛 ∈ (0...𝑆))))
4241imp 409 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍)) → ((𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≠ 𝑍) → 𝑛 ∈ (0...𝑆)))
4311, 42sylbid 242 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍)) → (𝑛 ∈ (𝐹 supp 𝑍) → 𝑛 ∈ (0...𝑆)))
4443ssrdv 3973 . 2 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍)) → (𝐹 supp 𝑍) ⊆ (0...𝑆))
451, 44mpdan 685 1 (𝜑 → (𝐹 supp 𝑍) ⊆ (0...𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wral 3138  Vcvv 3495  wss 3936   class class class wbr 5059   Fn wfn 6345  cfv 6350  (class class class)co 7150   supp csupp 7824  m cmap 8400  cr 10530  0cc0 10531   < clt 10669  cle 10670  0cn0 11891  ...cfz 12886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887
This theorem is referenced by:  fsuppmapnn0fz  13358  fsfnn0gsumfsffz  19097
  Copyright terms: Public domain W3C validator