MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppsssn Structured version   Visualization version   GIF version

Theorem suppsssn 7275
Description: Show that the support of a function is a subset of a singleton. (Contributed by AV, 21-Jul-2019.)
Hypotheses
Ref Expression
suppsssn.n ((𝜑𝑘𝐴𝑘𝑊) → 𝐵 = 𝑍)
suppsssn.a (𝜑𝐴𝑉)
Assertion
Ref Expression
suppsssn (𝜑 → ((𝑘𝐴𝐵) supp 𝑍) ⊆ {𝑊})
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘   𝑘,𝑊   𝑘,𝑍
Allowed substitution hints:   𝐵(𝑘)   𝑉(𝑘)

Proof of Theorem suppsssn
StepHypRef Expression
1 eldifsn 4287 . . 3 (𝑘 ∈ (𝐴 ∖ {𝑊}) ↔ (𝑘𝐴𝑘𝑊))
2 suppsssn.n . . . 4 ((𝜑𝑘𝐴𝑘𝑊) → 𝐵 = 𝑍)
323expb 1263 . . 3 ((𝜑 ∧ (𝑘𝐴𝑘𝑊)) → 𝐵 = 𝑍)
41, 3sylan2b 492 . 2 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑊})) → 𝐵 = 𝑍)
5 suppsssn.a . 2 (𝜑𝐴𝑉)
64, 5suppss2 7274 1 (𝜑 → ((𝑘𝐴𝐵) supp 𝑍) ⊆ {𝑊})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  cdif 3552  wss 3555  {csn 4148  cmpt 4673  (class class class)co 6604   supp csupp 7240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-supp 7241
This theorem is referenced by:  uvcresum  20051  mamulid  20166  mamurid  20167
  Copyright terms: Public domain W3C validator