MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppvalfn Structured version   Visualization version   GIF version

Theorem suppvalfn 7299
Description: The value of the operation constructing the support of a function with a given domain. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by AV, 22-Apr-2019.)
Assertion
Ref Expression
suppvalfn ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → (𝐹 supp 𝑍) = {𝑖𝑋 ∣ (𝐹𝑖) ≠ 𝑍})
Distinct variable groups:   𝑖,𝑉   𝑖,𝑊   𝑖,𝑋   𝑖,𝑍   𝑖,𝐹

Proof of Theorem suppvalfn
StepHypRef Expression
1 fnfun 5986 . . . 4 (𝐹 Fn 𝑋 → Fun 𝐹)
213ad2ant1 1081 . . 3 ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → Fun 𝐹)
3 fnex 6478 . . . 4 ((𝐹 Fn 𝑋𝑋𝑉) → 𝐹 ∈ V)
433adant3 1080 . . 3 ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → 𝐹 ∈ V)
5 simp3 1062 . . 3 ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → 𝑍𝑊)
6 suppval1 7298 . . 3 ((Fun 𝐹𝐹 ∈ V ∧ 𝑍𝑊) → (𝐹 supp 𝑍) = {𝑖 ∈ dom 𝐹 ∣ (𝐹𝑖) ≠ 𝑍})
72, 4, 5, 6syl3anc 1325 . 2 ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → (𝐹 supp 𝑍) = {𝑖 ∈ dom 𝐹 ∣ (𝐹𝑖) ≠ 𝑍})
8 fndm 5988 . . . 4 (𝐹 Fn 𝑋 → dom 𝐹 = 𝑋)
983ad2ant1 1081 . . 3 ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → dom 𝐹 = 𝑋)
10 rabeq 3190 . . 3 (dom 𝐹 = 𝑋 → {𝑖 ∈ dom 𝐹 ∣ (𝐹𝑖) ≠ 𝑍} = {𝑖𝑋 ∣ (𝐹𝑖) ≠ 𝑍})
119, 10syl 17 . 2 ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → {𝑖 ∈ dom 𝐹 ∣ (𝐹𝑖) ≠ 𝑍} = {𝑖𝑋 ∣ (𝐹𝑖) ≠ 𝑍})
127, 11eqtrd 2655 1 ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → (𝐹 supp 𝑍) = {𝑖𝑋 ∣ (𝐹𝑖) ≠ 𝑍})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1037   = wceq 1482  wcel 1989  wne 2793  {crab 2915  Vcvv 3198  dom cdm 5112  Fun wfun 5880   Fn wfn 5881  cfv 5886  (class class class)co 6647   supp csupp 7292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pr 4904  ax-un 6946
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-ral 2916  df-rex 2917  df-reu 2918  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-id 5022  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-supp 7293
This theorem is referenced by:  elsuppfn  7300  cantnflem1  8583  fsuppmapnn0fiub0  12788  fsuppmapnn0ub  12790  mptnn0fsupp  12792  mptnn0fsuppr  12794  cicer  16460  mptscmfsupp0  18922  rrgsupp  19285  frlmbas  20093  frlmssuvc2  20128  pmatcollpw2lem  20576  rrxmvallem  23181  fpwrelmapffslem  29492  fsumcvg4  29981  fsumsupp0  39616
  Copyright terms: Public domain W3C validator