Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suprnmpt Structured version   Visualization version   GIF version

Theorem suprnmpt 38829
Description: An explicit bound for the range of a bounded function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
suprnmpt.a (𝜑𝐴 ≠ ∅)
suprnmpt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
suprnmpt.bnd (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
suprnmpt.f 𝐹 = (𝑥𝐴𝐵)
suprnmpt.c 𝐶 = sup(ran 𝐹, ℝ, < )
Assertion
Ref Expression
suprnmpt (𝜑 → (𝐶 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝐶))
Distinct variable groups:   𝑥,𝐴   𝑦,𝐹   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐹(𝑥)

Proof of Theorem suprnmpt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 suprnmpt.c . . 3 𝐶 = sup(ran 𝐹, ℝ, < )
2 suprnmpt.b . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
32ralrimiva 2960 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐵 ∈ ℝ)
4 suprnmpt.f . . . . . 6 𝐹 = (𝑥𝐴𝐵)
54rnmptss 6347 . . . . 5 (∀𝑥𝐴 𝐵 ∈ ℝ → ran 𝐹 ⊆ ℝ)
63, 5syl 17 . . . 4 (𝜑 → ran 𝐹 ⊆ ℝ)
7 nfv 1840 . . . . 5 𝑥𝜑
8 nfmpt1 4707 . . . . . . . 8 𝑥(𝑥𝐴𝐵)
94, 8nfcxfr 2759 . . . . . . 7 𝑥𝐹
109nfrn 5328 . . . . . 6 𝑥ran 𝐹
11 nfcv 2761 . . . . . 6 𝑥
1210, 11nfne 2890 . . . . 5 𝑥ran 𝐹 ≠ ∅
13 suprnmpt.a . . . . . 6 (𝜑𝐴 ≠ ∅)
14 n0 3907 . . . . . 6 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
1513, 14sylib 208 . . . . 5 (𝜑 → ∃𝑥 𝑥𝐴)
16 simpr 477 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑥𝐴)
174elrnmpt1 5334 . . . . . . 7 ((𝑥𝐴𝐵 ∈ ℝ) → 𝐵 ∈ ran 𝐹)
1816, 2, 17syl2anc 692 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ran 𝐹)
19 ne0i 3897 . . . . . 6 (𝐵 ∈ ran 𝐹 → ran 𝐹 ≠ ∅)
2018, 19syl 17 . . . . 5 ((𝜑𝑥𝐴) → ran 𝐹 ≠ ∅)
217, 12, 15, 20exlimdd 2086 . . . 4 (𝜑 → ran 𝐹 ≠ ∅)
22 suprnmpt.bnd . . . . 5 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
23 nfv 1840 . . . . . 6 𝑦𝜑
24 nfre1 2999 . . . . . 6 𝑦𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑦
25 simp2 1060 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑦) → 𝑦 ∈ ℝ)
26 simpl1 1062 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑧 ∈ ran 𝐹) → 𝜑)
27 simpl3 1064 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑧 ∈ ran 𝐹) → ∀𝑥𝐴 𝐵𝑦)
28 vex 3189 . . . . . . . . . . . . . 14 𝑧 ∈ V
294elrnmpt 5332 . . . . . . . . . . . . . 14 (𝑧 ∈ V → (𝑧 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝑧 = 𝐵))
3028, 29ax-mp 5 . . . . . . . . . . . . 13 (𝑧 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝑧 = 𝐵)
3130biimpi 206 . . . . . . . . . . . 12 (𝑧 ∈ ran 𝐹 → ∃𝑥𝐴 𝑧 = 𝐵)
3231adantl 482 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑧 ∈ ran 𝐹) → ∃𝑥𝐴 𝑧 = 𝐵)
33 simp3 1061 . . . . . . . . . . . 12 ((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦 ∧ ∃𝑥𝐴 𝑧 = 𝐵) → ∃𝑥𝐴 𝑧 = 𝐵)
34 nfra1 2936 . . . . . . . . . . . . . 14 𝑥𝑥𝐴 𝐵𝑦
35 nfre1 2999 . . . . . . . . . . . . . 14 𝑥𝑥𝐴 𝑧 = 𝐵
367, 34, 35nf3an 1828 . . . . . . . . . . . . 13 𝑥(𝜑 ∧ ∀𝑥𝐴 𝐵𝑦 ∧ ∃𝑥𝐴 𝑧 = 𝐵)
37 nfv 1840 . . . . . . . . . . . . 13 𝑥 𝑧𝑦
38 simp3 1061 . . . . . . . . . . . . . . . 16 ((∀𝑥𝐴 𝐵𝑦𝑥𝐴𝑧 = 𝐵) → 𝑧 = 𝐵)
39 rspa 2925 . . . . . . . . . . . . . . . . 17 ((∀𝑥𝐴 𝐵𝑦𝑥𝐴) → 𝐵𝑦)
40393adant3 1079 . . . . . . . . . . . . . . . 16 ((∀𝑥𝐴 𝐵𝑦𝑥𝐴𝑧 = 𝐵) → 𝐵𝑦)
4138, 40eqbrtrd 4635 . . . . . . . . . . . . . . 15 ((∀𝑥𝐴 𝐵𝑦𝑥𝐴𝑧 = 𝐵) → 𝑧𝑦)
42413exp 1261 . . . . . . . . . . . . . 14 (∀𝑥𝐴 𝐵𝑦 → (𝑥𝐴 → (𝑧 = 𝐵𝑧𝑦)))
43423ad2ant2 1081 . . . . . . . . . . . . 13 ((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦 ∧ ∃𝑥𝐴 𝑧 = 𝐵) → (𝑥𝐴 → (𝑧 = 𝐵𝑧𝑦)))
4436, 37, 43rexlimd 3019 . . . . . . . . . . . 12 ((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦 ∧ ∃𝑥𝐴 𝑧 = 𝐵) → (∃𝑥𝐴 𝑧 = 𝐵𝑧𝑦))
4533, 44mpd 15 . . . . . . . . . . 11 ((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦 ∧ ∃𝑥𝐴 𝑧 = 𝐵) → 𝑧𝑦)
4626, 27, 32, 45syl3anc 1323 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑧 ∈ ran 𝐹) → 𝑧𝑦)
4746ralrimiva 2960 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑦) → ∀𝑧 ∈ ran 𝐹 𝑧𝑦)
48 19.8a 2049 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ ∀𝑧 ∈ ran 𝐹 𝑧𝑦) → ∃𝑦(𝑦 ∈ ℝ ∧ ∀𝑧 ∈ ran 𝐹 𝑧𝑦))
4925, 47, 48syl2anc 692 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑦) → ∃𝑦(𝑦 ∈ ℝ ∧ ∀𝑧 ∈ ran 𝐹 𝑧𝑦))
50 df-rex 2913 . . . . . . . 8 (∃𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑦 ↔ ∃𝑦(𝑦 ∈ ℝ ∧ ∀𝑧 ∈ ran 𝐹 𝑧𝑦))
5149, 50sylibr 224 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑦) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑦)
52513exp 1261 . . . . . 6 (𝜑 → (𝑦 ∈ ℝ → (∀𝑥𝐴 𝐵𝑦 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑦)))
5323, 24, 52rexlimd 3019 . . . . 5 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑦))
5422, 53mpd 15 . . . 4 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑦)
55 suprcl 10927 . . . 4 ((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑦) → sup(ran 𝐹, ℝ, < ) ∈ ℝ)
566, 21, 54, 55syl3anc 1323 . . 3 (𝜑 → sup(ran 𝐹, ℝ, < ) ∈ ℝ)
571, 56syl5eqel 2702 . 2 (𝜑𝐶 ∈ ℝ)
586adantr 481 . . . . 5 ((𝜑𝑥𝐴) → ran 𝐹 ⊆ ℝ)
5954adantr 481 . . . . 5 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑦)
60 suprub 10928 . . . . 5 (((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑦) ∧ 𝐵 ∈ ran 𝐹) → 𝐵 ≤ sup(ran 𝐹, ℝ, < ))
6158, 20, 59, 18, 60syl31anc 1326 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ≤ sup(ran 𝐹, ℝ, < ))
6261, 1syl6breqr 4655 . . 3 ((𝜑𝑥𝐴) → 𝐵𝐶)
6362ralrimiva 2960 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
6457, 63jca 554 1 (𝜑 → (𝐶 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wex 1701  wcel 1987  wne 2790  wral 2907  wrex 2908  Vcvv 3186  wss 3555  c0 3891   class class class wbr 4613  cmpt 4673  ran crn 5075  supcsup 8290  cr 9879   < clt 10018  cle 10019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-po 4995  df-so 4996  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213
This theorem is referenced by:  ioodvbdlimc1lem1  39452  ioodvbdlimc1lem2  39453  ioodvbdlimc2lem  39455
  Copyright terms: Public domain W3C validator