MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suprzub Structured version   Visualization version   GIF version

Theorem suprzub 11970
Description: The supremum of a bounded-above set of integers is greater than any member of the set. (Contributed by Mario Carneiro, 21-Apr-2015.)
Assertion
Ref Expression
suprzub ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥𝐵𝐴) → 𝐵 ≤ sup(𝐴, ℝ, < ))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem suprzub
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simp3 1133 . . 3 ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥𝐵𝐴) → 𝐵𝐴)
2 ltso 10308 . . . . 5 < Or ℝ
32a1i 11 . . . 4 ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥𝐵𝐴) → < Or ℝ)
4 simp1 1131 . . . . . 6 ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥𝐵𝐴) → 𝐴 ⊆ ℤ)
5 zssre 11574 . . . . . 6 ℤ ⊆ ℝ
64, 5syl6ss 3754 . . . . 5 ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥𝐵𝐴) → 𝐴 ⊆ ℝ)
7 ne0i 4062 . . . . . . 7 (𝐵𝐴𝐴 ≠ ∅)
81, 7syl 17 . . . . . 6 ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥𝐵𝐴) → 𝐴 ≠ ∅)
9 simp2 1132 . . . . . 6 ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥𝐵𝐴) → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥)
10 zsupss 11968 . . . . . 6 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
114, 8, 9, 10syl3anc 1477 . . . . 5 ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥𝐵𝐴) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
12 ssrexv 3806 . . . . 5 (𝐴 ⊆ ℝ → (∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
136, 11, 12sylc 65 . . . 4 ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥𝐵𝐴) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
143, 13supub 8528 . . 3 ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥𝐵𝐴) → (𝐵𝐴 → ¬ sup(𝐴, ℝ, < ) < 𝐵))
151, 14mpd 15 . 2 ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥𝐵𝐴) → ¬ sup(𝐴, ℝ, < ) < 𝐵)
166, 1sseldd 3743 . . 3 ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥𝐵𝐴) → 𝐵 ∈ ℝ)
17 suprzcl2 11969 . . . . 5 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ∈ 𝐴)
184, 8, 9, 17syl3anc 1477 . . . 4 ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥𝐵𝐴) → sup(𝐴, ℝ, < ) ∈ 𝐴)
196, 18sseldd 3743 . . 3 ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥𝐵𝐴) → sup(𝐴, ℝ, < ) ∈ ℝ)
2016, 19lenltd 10373 . 2 ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥𝐵𝐴) → (𝐵 ≤ sup(𝐴, ℝ, < ) ↔ ¬ sup(𝐴, ℝ, < ) < 𝐵))
2115, 20mpbird 247 1 ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥𝐵𝐴) → 𝐵 ≤ sup(𝐴, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1072  wcel 2137  wne 2930  wral 3048  wrex 3049  wss 3713  c0 4056   class class class wbr 4802   Or wor 5184  supcsup 8509  cr 10125   < clt 10264  cle 10265  cz 11567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112  ax-cnex 10182  ax-resscn 10183  ax-1cn 10184  ax-icn 10185  ax-addcl 10186  ax-addrcl 10187  ax-mulcl 10188  ax-mulrcl 10189  ax-mulcom 10190  ax-addass 10191  ax-mulass 10192  ax-distr 10193  ax-i2m1 10194  ax-1ne0 10195  ax-1rid 10196  ax-rnegex 10197  ax-rrecex 10198  ax-cnre 10199  ax-pre-lttri 10200  ax-pre-lttrn 10201  ax-pre-ltadd 10202  ax-pre-mulgt0 10203
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-nel 3034  df-ral 3053  df-rex 3054  df-reu 3055  df-rmo 3056  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-pss 3729  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-tp 4324  df-op 4326  df-uni 4587  df-iun 4672  df-br 4803  df-opab 4863  df-mpt 4880  df-tr 4903  df-id 5172  df-eprel 5177  df-po 5185  df-so 5186  df-fr 5223  df-we 5225  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-pred 5839  df-ord 5885  df-on 5886  df-lim 5887  df-suc 5888  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-riota 6772  df-ov 6814  df-oprab 6815  df-mpt2 6816  df-om 7229  df-wrecs 7574  df-recs 7635  df-rdg 7673  df-er 7909  df-en 8120  df-dom 8121  df-sdom 8122  df-sup 8511  df-inf 8512  df-pnf 10266  df-mnf 10267  df-xr 10268  df-ltxr 10269  df-le 10270  df-sub 10458  df-neg 10459  df-nn 11211  df-n0 11483  df-z 11568  df-uz 11878
This theorem is referenced by:  gcdcllem3  15423  pcprendvds  15745  pcpremul  15748  prmreclem1  15820  0ram  15924  gexex  18454  fourierdlem25  40850
  Copyright terms: Public domain W3C validator