Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supssd Structured version   Visualization version   GIF version

Theorem supssd 30439
Description: Inequality deduction for supremum of a subset. (Contributed by Thierry Arnoux, 21-Mar-2017.)
Hypotheses
Ref Expression
supssd.0 (𝜑𝑅 Or 𝐴)
supssd.1 (𝜑𝐵𝐶)
supssd.2 (𝜑𝐶𝐴)
supssd.3 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
supssd.4 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)))
Assertion
Ref Expression
supssd (𝜑 → ¬ sup(𝐶, 𝐴, 𝑅)𝑅sup(𝐵, 𝐴, 𝑅))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem supssd
StepHypRef Expression
1 supssd.0 . . 3 (𝜑𝑅 Or 𝐴)
2 supssd.4 . . 3 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)))
31, 2supcl 8916 . 2 (𝜑 → sup(𝐶, 𝐴, 𝑅) ∈ 𝐴)
4 supssd.1 . . . . 5 (𝜑𝐵𝐶)
54sseld 3966 . . . 4 (𝜑 → (𝑧𝐵𝑧𝐶))
61, 2supub 8917 . . . 4 (𝜑 → (𝑧𝐶 → ¬ sup(𝐶, 𝐴, 𝑅)𝑅𝑧))
75, 6syld 47 . . 3 (𝜑 → (𝑧𝐵 → ¬ sup(𝐶, 𝐴, 𝑅)𝑅𝑧))
87ralrimiv 3181 . 2 (𝜑 → ∀𝑧𝐵 ¬ sup(𝐶, 𝐴, 𝑅)𝑅𝑧)
9 supssd.3 . . 3 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
101, 9supnub 8920 . 2 (𝜑 → ((sup(𝐶, 𝐴, 𝑅) ∈ 𝐴 ∧ ∀𝑧𝐵 ¬ sup(𝐶, 𝐴, 𝑅)𝑅𝑧) → ¬ sup(𝐶, 𝐴, 𝑅)𝑅sup(𝐵, 𝐴, 𝑅)))
113, 8, 10mp2and 697 1 (𝜑 → ¬ sup(𝐶, 𝐴, 𝑅)𝑅sup(𝐵, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wcel 2110  wral 3138  wrex 3139  wss 3936   class class class wbr 5059   Or wor 5468  supcsup 8898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-br 5060  df-po 5469  df-so 5470  df-iota 6309  df-riota 7108  df-sup 8900
This theorem is referenced by:  xrsupssd  30477
  Copyright terms: Public domain W3C validator