MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supxrbnd Structured version   Visualization version   GIF version

Theorem supxrbnd 12347
Description: The supremum of a bounded-above nonempty set of reals is real. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
supxrbnd ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ sup(𝐴, ℝ*, < ) < +∞) → sup(𝐴, ℝ*, < ) ∈ ℝ)

Proof of Theorem supxrbnd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ressxr 10271 . . . . 5 ℝ ⊆ ℝ*
2 sstr 3748 . . . . 5 ((𝐴 ⊆ ℝ ∧ ℝ ⊆ ℝ*) → 𝐴 ⊆ ℝ*)
31, 2mpan2 709 . . . 4 (𝐴 ⊆ ℝ → 𝐴 ⊆ ℝ*)
4 supxrcl 12334 . . . . . . 7 (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)
5 pnfxr 10280 . . . . . . . . . 10 +∞ ∈ ℝ*
6 xrltne 12183 . . . . . . . . . 10 ((sup(𝐴, ℝ*, < ) ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ sup(𝐴, ℝ*, < ) < +∞) → +∞ ≠ sup(𝐴, ℝ*, < ))
75, 6mp3an2 1557 . . . . . . . . 9 ((sup(𝐴, ℝ*, < ) ∈ ℝ* ∧ sup(𝐴, ℝ*, < ) < +∞) → +∞ ≠ sup(𝐴, ℝ*, < ))
87necomd 2983 . . . . . . . 8 ((sup(𝐴, ℝ*, < ) ∈ ℝ* ∧ sup(𝐴, ℝ*, < ) < +∞) → sup(𝐴, ℝ*, < ) ≠ +∞)
98ex 449 . . . . . . 7 (sup(𝐴, ℝ*, < ) ∈ ℝ* → (sup(𝐴, ℝ*, < ) < +∞ → sup(𝐴, ℝ*, < ) ≠ +∞))
104, 9syl 17 . . . . . 6 (𝐴 ⊆ ℝ* → (sup(𝐴, ℝ*, < ) < +∞ → sup(𝐴, ℝ*, < ) ≠ +∞))
11 supxrunb2 12339 . . . . . . . . 9 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦 ↔ sup(𝐴, ℝ*, < ) = +∞))
12 ssel2 3735 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℝ*𝑦𝐴) → 𝑦 ∈ ℝ*)
1312adantlr 753 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) → 𝑦 ∈ ℝ*)
14 rexr 10273 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
1514ad2antlr 765 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) → 𝑥 ∈ ℝ*)
16 xrlenlt 10291 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑦𝑥 ↔ ¬ 𝑥 < 𝑦))
1716con2bid 343 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑥 < 𝑦 ↔ ¬ 𝑦𝑥))
1813, 15, 17syl2anc 696 . . . . . . . . . . . 12 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) → (𝑥 < 𝑦 ↔ ¬ 𝑦𝑥))
1918rexbidva 3183 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) → (∃𝑦𝐴 𝑥 < 𝑦 ↔ ∃𝑦𝐴 ¬ 𝑦𝑥))
20 rexnal 3129 . . . . . . . . . . 11 (∃𝑦𝐴 ¬ 𝑦𝑥 ↔ ¬ ∀𝑦𝐴 𝑦𝑥)
2119, 20syl6bb 276 . . . . . . . . . 10 ((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) → (∃𝑦𝐴 𝑥 < 𝑦 ↔ ¬ ∀𝑦𝐴 𝑦𝑥))
2221ralbidva 3119 . . . . . . . . 9 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦 ↔ ∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑦𝑥))
2311, 22bitr3d 270 . . . . . . . 8 (𝐴 ⊆ ℝ* → (sup(𝐴, ℝ*, < ) = +∞ ↔ ∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑦𝑥))
24 ralnex 3126 . . . . . . . 8 (∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑦𝑥 ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
2523, 24syl6bb 276 . . . . . . 7 (𝐴 ⊆ ℝ* → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
2625necon2abid 2970 . . . . . 6 (𝐴 ⊆ ℝ* → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥 ↔ sup(𝐴, ℝ*, < ) ≠ +∞))
2710, 26sylibrd 249 . . . . 5 (𝐴 ⊆ ℝ* → (sup(𝐴, ℝ*, < ) < +∞ → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
2827imp 444 . . . 4 ((𝐴 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) < +∞) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
293, 28sylan 489 . . 3 ((𝐴 ⊆ ℝ ∧ sup(𝐴, ℝ*, < ) < +∞) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
30293adant2 1126 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ sup(𝐴, ℝ*, < ) < +∞) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
31 supxrre 12346 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ*, < ) = sup(𝐴, ℝ, < ))
32 suprcl 11171 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ∈ ℝ)
3331, 32eqeltrd 2835 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ*, < ) ∈ ℝ)
3430, 33syld3an3 1516 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ sup(𝐴, ℝ*, < ) < +∞) → sup(𝐴, ℝ*, < ) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1628  wcel 2135  wne 2928  wral 3046  wrex 3047  wss 3711  c0 4054   class class class wbr 4800  supcsup 8507  cr 10123  +∞cpnf 10259  *cxr 10261   < clt 10262  cle 10263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051  ax-un 7110  ax-cnex 10180  ax-resscn 10181  ax-1cn 10182  ax-icn 10183  ax-addcl 10184  ax-addrcl 10185  ax-mulcl 10186  ax-mulrcl 10187  ax-mulcom 10188  ax-addass 10189  ax-mulass 10190  ax-distr 10191  ax-i2m1 10192  ax-1ne0 10193  ax-1rid 10194  ax-rnegex 10195  ax-rrecex 10196  ax-cnre 10197  ax-pre-lttri 10198  ax-pre-lttrn 10199  ax-pre-ltadd 10200  ax-pre-mulgt0 10201  ax-pre-sup 10202
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-nel 3032  df-ral 3051  df-rex 3052  df-reu 3053  df-rmo 3054  df-rab 3055  df-v 3338  df-sbc 3573  df-csb 3671  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4585  df-br 4801  df-opab 4861  df-mpt 4878  df-id 5170  df-po 5183  df-so 5184  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-res 5274  df-ima 5275  df-iota 6008  df-fun 6047  df-fn 6048  df-f 6049  df-f1 6050  df-fo 6051  df-f1o 6052  df-fv 6053  df-riota 6770  df-ov 6812  df-oprab 6813  df-mpt2 6814  df-er 7907  df-en 8118  df-dom 8119  df-sdom 8120  df-sup 8509  df-pnf 10264  df-mnf 10265  df-xr 10266  df-ltxr 10267  df-le 10268  df-sub 10456  df-neg 10457
This theorem is referenced by:  supxrgtmnf  12348  ovolunlem1  23461  uniioombllem1  23545
  Copyright terms: Public domain W3C validator