Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supxrre3 Structured version   Visualization version   GIF version

Theorem supxrre3 39354
Description: The supremum of a nonempty set of reals, is real if and only if it is bounded-above . (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
supxrre3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (sup(𝐴, ℝ*, < ) ∈ ℝ ↔ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem supxrre3
StepHypRef Expression
1 supxrre1 12145 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (sup(𝐴, ℝ*, < ) ∈ ℝ ↔ sup(𝐴, ℝ*, < ) < +∞))
2 id 22 . . . . . 6 (𝐴 ⊆ ℝ → 𝐴 ⊆ ℝ)
3 rexr 10070 . . . . . . . 8 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
43ssriv 3599 . . . . . . 7 ℝ ⊆ ℝ*
54a1i 11 . . . . . 6 (𝐴 ⊆ ℝ → ℝ ⊆ ℝ*)
62, 5sstrd 3605 . . . . 5 (𝐴 ⊆ ℝ → 𝐴 ⊆ ℝ*)
7 supxrbnd2 12137 . . . . 5 (𝐴 ⊆ ℝ* → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥 ↔ sup(𝐴, ℝ*, < ) < +∞))
86, 7syl 17 . . . 4 (𝐴 ⊆ ℝ → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥 ↔ sup(𝐴, ℝ*, < ) < +∞))
98bicomd 213 . . 3 (𝐴 ⊆ ℝ → (sup(𝐴, ℝ*, < ) < +∞ ↔ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
109adantr 481 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (sup(𝐴, ℝ*, < ) < +∞ ↔ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
111, 10bitrd 268 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (sup(𝐴, ℝ*, < ) ∈ ℝ ↔ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wcel 1988  wne 2791  wral 2909  wrex 2910  wss 3567  c0 3907   class class class wbr 4644  supcsup 8331  cr 9920  +∞cpnf 10056  *cxr 10058   < clt 10059  cle 10060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-po 5025  df-so 5026  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-sup 8333  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254
This theorem is referenced by:  supxrre3rnmpt  39469  sge0resplit  40386
  Copyright terms: Public domain W3C validator