MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supxrss Structured version   Visualization version   GIF version

Theorem supxrss 12717
Description: Smaller sets of extended reals have smaller suprema. (Contributed by Mario Carneiro, 1-Apr-2015.)
Assertion
Ref Expression
supxrss ((𝐴𝐵𝐵 ⊆ ℝ*) → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))

Proof of Theorem supxrss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simplr 767 . . . 4 (((𝐴𝐵𝐵 ⊆ ℝ*) ∧ 𝑥𝐴) → 𝐵 ⊆ ℝ*)
2 simpl 485 . . . . 5 ((𝐴𝐵𝐵 ⊆ ℝ*) → 𝐴𝐵)
32sselda 3965 . . . 4 (((𝐴𝐵𝐵 ⊆ ℝ*) ∧ 𝑥𝐴) → 𝑥𝐵)
4 supxrub 12709 . . . 4 ((𝐵 ⊆ ℝ*𝑥𝐵) → 𝑥 ≤ sup(𝐵, ℝ*, < ))
51, 3, 4syl2anc 586 . . 3 (((𝐴𝐵𝐵 ⊆ ℝ*) ∧ 𝑥𝐴) → 𝑥 ≤ sup(𝐵, ℝ*, < ))
65ralrimiva 3180 . 2 ((𝐴𝐵𝐵 ⊆ ℝ*) → ∀𝑥𝐴 𝑥 ≤ sup(𝐵, ℝ*, < ))
7 sstr 3973 . . 3 ((𝐴𝐵𝐵 ⊆ ℝ*) → 𝐴 ⊆ ℝ*)
8 supxrcl 12700 . . . 4 (𝐵 ⊆ ℝ* → sup(𝐵, ℝ*, < ) ∈ ℝ*)
98adantl 484 . . 3 ((𝐴𝐵𝐵 ⊆ ℝ*) → sup(𝐵, ℝ*, < ) ∈ ℝ*)
10 supxrleub 12711 . . 3 ((𝐴 ⊆ ℝ* ∧ sup(𝐵, ℝ*, < ) ∈ ℝ*) → (sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ) ↔ ∀𝑥𝐴 𝑥 ≤ sup(𝐵, ℝ*, < )))
117, 9, 10syl2anc 586 . 2 ((𝐴𝐵𝐵 ⊆ ℝ*) → (sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ) ↔ ∀𝑥𝐴 𝑥 ≤ sup(𝐵, ℝ*, < )))
126, 11mpbird 259 1 ((𝐴𝐵𝐵 ⊆ ℝ*) → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wcel 2108  wral 3136  wss 3934   class class class wbr 5057  supcsup 8896  *cxr 10666   < clt 10667  cle 10668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8898  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865
This theorem is referenced by:  deg1mul3le  24702  ioossioobi  41782  limsupres  41975  supcnvlimsup  42010  liminfval2  42038  liminflelimsuplem  42045  sge0less  42664  sge0reuz  42719  smflimsuplem4  43087
  Copyright terms: Public domain W3C validator