MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swopolem Structured version   Visualization version   GIF version

Theorem swopolem 5009
Description: Perform the substitutions into the strict weak ordering law. (Contributed by Mario Carneiro, 31-Dec-2014.)
Hypothesis
Ref Expression
swopolem.1 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)))
Assertion
Ref Expression
swopolem ((𝜑 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑋𝑅𝑌 → (𝑋𝑅𝑍𝑍𝑅𝑌)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝜑,𝑥,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧   𝑦,𝑌,𝑧   𝑧,𝑍
Allowed substitution hints:   𝑌(𝑥)   𝑍(𝑥,𝑦)

Proof of Theorem swopolem
StepHypRef Expression
1 swopolem.1 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)))
21ralrimivvva 2967 . 2 (𝜑 → ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)))
3 breq1 4621 . . . 4 (𝑥 = 𝑋 → (𝑥𝑅𝑦𝑋𝑅𝑦))
4 breq1 4621 . . . . 5 (𝑥 = 𝑋 → (𝑥𝑅𝑧𝑋𝑅𝑧))
54orbi1d 738 . . . 4 (𝑥 = 𝑋 → ((𝑥𝑅𝑧𝑧𝑅𝑦) ↔ (𝑋𝑅𝑧𝑧𝑅𝑦)))
63, 5imbi12d 334 . . 3 (𝑥 = 𝑋 → ((𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)) ↔ (𝑋𝑅𝑦 → (𝑋𝑅𝑧𝑧𝑅𝑦))))
7 breq2 4622 . . . 4 (𝑦 = 𝑌 → (𝑋𝑅𝑦𝑋𝑅𝑌))
8 breq2 4622 . . . . 5 (𝑦 = 𝑌 → (𝑧𝑅𝑦𝑧𝑅𝑌))
98orbi2d 737 . . . 4 (𝑦 = 𝑌 → ((𝑋𝑅𝑧𝑧𝑅𝑦) ↔ (𝑋𝑅𝑧𝑧𝑅𝑌)))
107, 9imbi12d 334 . . 3 (𝑦 = 𝑌 → ((𝑋𝑅𝑦 → (𝑋𝑅𝑧𝑧𝑅𝑦)) ↔ (𝑋𝑅𝑌 → (𝑋𝑅𝑧𝑧𝑅𝑌))))
11 breq2 4622 . . . . 5 (𝑧 = 𝑍 → (𝑋𝑅𝑧𝑋𝑅𝑍))
12 breq1 4621 . . . . 5 (𝑧 = 𝑍 → (𝑧𝑅𝑌𝑍𝑅𝑌))
1311, 12orbi12d 745 . . . 4 (𝑧 = 𝑍 → ((𝑋𝑅𝑧𝑧𝑅𝑌) ↔ (𝑋𝑅𝑍𝑍𝑅𝑌)))
1413imbi2d 330 . . 3 (𝑧 = 𝑍 → ((𝑋𝑅𝑌 → (𝑋𝑅𝑧𝑧𝑅𝑌)) ↔ (𝑋𝑅𝑌 → (𝑋𝑅𝑍𝑍𝑅𝑌))))
156, 10, 14rspc3v 3313 . 2 ((𝑋𝐴𝑌𝐴𝑍𝐴) → (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)) → (𝑋𝑅𝑌 → (𝑋𝑅𝑍𝑍𝑅𝑌))))
162, 15mpan9 486 1 ((𝜑 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑋𝑅𝑌 → (𝑋𝑅𝑍𝑍𝑅𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907   class class class wbr 4618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rab 2916  df-v 3191  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-br 4619
This theorem is referenced by:  swoer  7724  swoord1  7725  swoord2  7726
  Copyright terms: Public domain W3C validator