MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrd00 Structured version   Visualization version   GIF version

Theorem swrd00 13356
Description: A zero length substring. (Contributed by Stefan O'Rear, 27-Aug-2015.)
Assertion
Ref Expression
swrd00 (𝑆 substr ⟨𝑋, 𝑋⟩) = ∅

Proof of Theorem swrd00
Dummy variables 𝑠 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opelxp 5106 . . . 4 (⟨𝑆, ⟨𝑋, 𝑋⟩⟩ ∈ (V × (ℤ × ℤ)) ↔ (𝑆 ∈ V ∧ ⟨𝑋, 𝑋⟩ ∈ (ℤ × ℤ)))
2 opelxp 5106 . . . . 5 (⟨𝑋, 𝑋⟩ ∈ (ℤ × ℤ) ↔ (𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ))
3 swrdval 13355 . . . . . . 7 ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑆 substr ⟨𝑋, 𝑋⟩) = if((𝑋..^𝑋) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝑋𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))), ∅))
4 fzo0 12433 . . . . . . . . . 10 (𝑋..^𝑋) = ∅
5 0ss 3944 . . . . . . . . . 10 ∅ ⊆ dom 𝑆
64, 5eqsstri 3614 . . . . . . . . 9 (𝑋..^𝑋) ⊆ dom 𝑆
76iftruei 4065 . . . . . . . 8 if((𝑋..^𝑋) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝑋𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))), ∅) = (𝑥 ∈ (0..^(𝑋𝑋)) ↦ (𝑆‘(𝑥 + 𝑋)))
8 zcn 11326 . . . . . . . . . . . . . 14 (𝑋 ∈ ℤ → 𝑋 ∈ ℂ)
98subidd 10324 . . . . . . . . . . . . 13 (𝑋 ∈ ℤ → (𝑋𝑋) = 0)
109oveq2d 6620 . . . . . . . . . . . 12 (𝑋 ∈ ℤ → (0..^(𝑋𝑋)) = (0..^0))
11103ad2ant2 1081 . . . . . . . . . . 11 ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (0..^(𝑋𝑋)) = (0..^0))
12 fzo0 12433 . . . . . . . . . . 11 (0..^0) = ∅
1311, 12syl6eq 2671 . . . . . . . . . 10 ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (0..^(𝑋𝑋)) = ∅)
1413mpteq1d 4698 . . . . . . . . 9 ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑥 ∈ (0..^(𝑋𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))) = (𝑥 ∈ ∅ ↦ (𝑆‘(𝑥 + 𝑋))))
15 mpt0 5978 . . . . . . . . 9 (𝑥 ∈ ∅ ↦ (𝑆‘(𝑥 + 𝑋))) = ∅
1614, 15syl6eq 2671 . . . . . . . 8 ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑥 ∈ (0..^(𝑋𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))) = ∅)
177, 16syl5eq 2667 . . . . . . 7 ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → if((𝑋..^𝑋) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝑋𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))), ∅) = ∅)
183, 17eqtrd 2655 . . . . . 6 ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑆 substr ⟨𝑋, 𝑋⟩) = ∅)
19183expb 1263 . . . . 5 ((𝑆 ∈ V ∧ (𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ)) → (𝑆 substr ⟨𝑋, 𝑋⟩) = ∅)
202, 19sylan2b 492 . . . 4 ((𝑆 ∈ V ∧ ⟨𝑋, 𝑋⟩ ∈ (ℤ × ℤ)) → (𝑆 substr ⟨𝑋, 𝑋⟩) = ∅)
211, 20sylbi 207 . . 3 (⟨𝑆, ⟨𝑋, 𝑋⟩⟩ ∈ (V × (ℤ × ℤ)) → (𝑆 substr ⟨𝑋, 𝑋⟩) = ∅)
22 df-substr 13242 . . . 4 substr = (𝑠 ∈ V, 𝑏 ∈ (ℤ × ℤ) ↦ if(((1st𝑏)..^(2nd𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑥 + (1st𝑏)))), ∅))
23 ovex 6632 . . . . . 6 (0..^((2nd𝑏) − (1st𝑏))) ∈ V
2423mptex 6440 . . . . 5 (𝑥 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑥 + (1st𝑏)))) ∈ V
25 0ex 4750 . . . . 5 ∅ ∈ V
2624, 25ifex 4128 . . . 4 if(((1st𝑏)..^(2nd𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑥 + (1st𝑏)))), ∅) ∈ V
2722, 26dmmpt2 7185 . . 3 dom substr = (V × (ℤ × ℤ))
2821, 27eleq2s 2716 . 2 (⟨𝑆, ⟨𝑋, 𝑋⟩⟩ ∈ dom substr → (𝑆 substr ⟨𝑋, 𝑋⟩) = ∅)
29 df-ov 6607 . . 3 (𝑆 substr ⟨𝑋, 𝑋⟩) = ( substr ‘⟨𝑆, ⟨𝑋, 𝑋⟩⟩)
30 ndmfv 6175 . . 3 (¬ ⟨𝑆, ⟨𝑋, 𝑋⟩⟩ ∈ dom substr → ( substr ‘⟨𝑆, ⟨𝑋, 𝑋⟩⟩) = ∅)
3129, 30syl5eq 2667 . 2 (¬ ⟨𝑆, ⟨𝑋, 𝑋⟩⟩ ∈ dom substr → (𝑆 substr ⟨𝑋, 𝑋⟩) = ∅)
3228, 31pm2.61i 176 1 (𝑆 substr ⟨𝑋, 𝑋⟩) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 384  w3a 1036   = wceq 1480  wcel 1987  Vcvv 3186  wss 3555  c0 3891  ifcif 4058  cop 4154  cmpt 4673   × cxp 5072  dom cdm 5074  cfv 5847  (class class class)co 6604  1st c1st 7111  2nd c2nd 7112  0cc0 9880   + caddc 9883  cmin 10210  cz 11321  ..^cfzo 12406   substr csubstr 13234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-fzo 12407  df-substr 13242
This theorem is referenced by:  swrdccatin1  13420  swrdccat3blem  13432  cshw0  13477  pfx00  40680
  Copyright terms: Public domain W3C validator