MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdccatin2 Structured version   Visualization version   GIF version

Theorem swrdccatin2 13424
Description: The subword of a concatenation of two words within the second of the concatenated words. (Contributed by Alexander van der Vekens, 28-Mar-2018.) (Revised by Alexander van der Vekens, 27-May-2018.)
Hypothesis
Ref Expression
swrdccatin12.l 𝐿 = (#‘𝐴)
Assertion
Ref Expression
swrdccatin2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩)))

Proof of Theorem swrdccatin2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 swrdccatin12.l . . . . . . . 8 𝐿 = (#‘𝐴)
2 oveq1 6611 . . . . . . . . . 10 (𝐿 = (#‘𝐴) → (𝐿...𝑁) = ((#‘𝐴)...𝑁))
32eleq2d 2684 . . . . . . . . 9 (𝐿 = (#‘𝐴) → (𝑀 ∈ (𝐿...𝑁) ↔ 𝑀 ∈ ((#‘𝐴)...𝑁)))
4 id 22 . . . . . . . . . . 11 (𝐿 = (#‘𝐴) → 𝐿 = (#‘𝐴))
5 oveq1 6611 . . . . . . . . . . 11 (𝐿 = (#‘𝐴) → (𝐿 + (#‘𝐵)) = ((#‘𝐴) + (#‘𝐵)))
64, 5oveq12d 6622 . . . . . . . . . 10 (𝐿 = (#‘𝐴) → (𝐿...(𝐿 + (#‘𝐵))) = ((#‘𝐴)...((#‘𝐴) + (#‘𝐵))))
76eleq2d 2684 . . . . . . . . 9 (𝐿 = (#‘𝐴) → (𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))) ↔ 𝑁 ∈ ((#‘𝐴)...((#‘𝐴) + (#‘𝐵)))))
83, 7anbi12d 746 . . . . . . . 8 (𝐿 = (#‘𝐴) → ((𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))) ↔ (𝑀 ∈ ((#‘𝐴)...𝑁) ∧ 𝑁 ∈ ((#‘𝐴)...((#‘𝐴) + (#‘𝐵))))))
91, 8ax-mp 5 . . . . . . 7 ((𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))) ↔ (𝑀 ∈ ((#‘𝐴)...𝑁) ∧ 𝑁 ∈ ((#‘𝐴)...((#‘𝐴) + (#‘𝐵)))))
10 lencl 13263 . . . . . . . . 9 (𝐴 ∈ Word 𝑉 → (#‘𝐴) ∈ ℕ0)
11 elnn0uz 11669 . . . . . . . . . . . . 13 ((#‘𝐴) ∈ ℕ0 ↔ (#‘𝐴) ∈ (ℤ‘0))
1211biimpi 206 . . . . . . . . . . . 12 ((#‘𝐴) ∈ ℕ0 → (#‘𝐴) ∈ (ℤ‘0))
13 fzss1 12322 . . . . . . . . . . . 12 ((#‘𝐴) ∈ (ℤ‘0) → ((#‘𝐴)...𝑁) ⊆ (0...𝑁))
1412, 13syl 17 . . . . . . . . . . 11 ((#‘𝐴) ∈ ℕ0 → ((#‘𝐴)...𝑁) ⊆ (0...𝑁))
1514sseld 3582 . . . . . . . . . 10 ((#‘𝐴) ∈ ℕ0 → (𝑀 ∈ ((#‘𝐴)...𝑁) → 𝑀 ∈ (0...𝑁)))
16 fzss1 12322 . . . . . . . . . . . 12 ((#‘𝐴) ∈ (ℤ‘0) → ((#‘𝐴)...((#‘𝐴) + (#‘𝐵))) ⊆ (0...((#‘𝐴) + (#‘𝐵))))
1712, 16syl 17 . . . . . . . . . . 11 ((#‘𝐴) ∈ ℕ0 → ((#‘𝐴)...((#‘𝐴) + (#‘𝐵))) ⊆ (0...((#‘𝐴) + (#‘𝐵))))
1817sseld 3582 . . . . . . . . . 10 ((#‘𝐴) ∈ ℕ0 → (𝑁 ∈ ((#‘𝐴)...((#‘𝐴) + (#‘𝐵))) → 𝑁 ∈ (0...((#‘𝐴) + (#‘𝐵)))))
1915, 18anim12d 585 . . . . . . . . 9 ((#‘𝐴) ∈ ℕ0 → ((𝑀 ∈ ((#‘𝐴)...𝑁) ∧ 𝑁 ∈ ((#‘𝐴)...((#‘𝐴) + (#‘𝐵)))) → (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...((#‘𝐴) + (#‘𝐵))))))
2010, 19syl 17 . . . . . . . 8 (𝐴 ∈ Word 𝑉 → ((𝑀 ∈ ((#‘𝐴)...𝑁) ∧ 𝑁 ∈ ((#‘𝐴)...((#‘𝐴) + (#‘𝐵)))) → (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...((#‘𝐴) + (#‘𝐵))))))
2120adantr 481 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ ((#‘𝐴)...𝑁) ∧ 𝑁 ∈ ((#‘𝐴)...((#‘𝐴) + (#‘𝐵)))) → (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...((#‘𝐴) + (#‘𝐵))))))
229, 21syl5bi 232 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))) → (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...((#‘𝐴) + (#‘𝐵))))))
2322imp 445 . . . . 5 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...((#‘𝐴) + (#‘𝐵)))))
24 swrdccatfn 13419 . . . . 5 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...((#‘𝐴) + (#‘𝐵))))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
2523, 24syldan 487 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
26 elfz2 12275 . . . . . . . . . 10 (𝑀 ∈ (𝐿...𝑁) ↔ ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝐿𝑀𝑀𝑁)))
27 zcn 11326 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
28 zcn 11326 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
29 zcn 11326 . . . . . . . . . . . . 13 (𝐿 ∈ ℤ → 𝐿 ∈ ℂ)
3027, 28, 293anim123i 1245 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ))
31303comr 1270 . . . . . . . . . . 11 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ))
3231adantr 481 . . . . . . . . . 10 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝐿𝑀𝑀𝑁)) → (𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ))
3326, 32sylbi 207 . . . . . . . . 9 (𝑀 ∈ (𝐿...𝑁) → (𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ))
3433adantr 481 . . . . . . . 8 ((𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))) → (𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ))
35 nnncan2 10262 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) → ((𝑁𝐿) − (𝑀𝐿)) = (𝑁𝑀))
3634, 35syl 17 . . . . . . 7 ((𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))) → ((𝑁𝐿) − (𝑀𝐿)) = (𝑁𝑀))
3736adantl 482 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → ((𝑁𝐿) − (𝑀𝐿)) = (𝑁𝑀))
3837oveq2d 6620 . . . . 5 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → (0..^((𝑁𝐿) − (𝑀𝐿))) = (0..^(𝑁𝑀)))
3938fneq2d 5940 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) Fn (0..^((𝑁𝐿) − (𝑀𝐿))) ↔ ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀))))
4025, 39mpbird 247 . . 3 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) Fn (0..^((𝑁𝐿) − (𝑀𝐿))))
41 simpr 477 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → 𝐵 ∈ Word 𝑉)
4241adantr 481 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → 𝐵 ∈ Word 𝑉)
43 elfzmlbm 12390 . . . . 5 (𝑀 ∈ (𝐿...𝑁) → (𝑀𝐿) ∈ (0...(𝑁𝐿)))
4443ad2antrl 763 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → (𝑀𝐿) ∈ (0...(𝑁𝐿)))
45 elfzmlbp 12391 . . . . . . . 8 (((#‘𝐵) ∈ ℤ ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))) → (𝑁𝐿) ∈ (0...(#‘𝐵)))
4645ex 450 . . . . . . 7 ((#‘𝐵) ∈ ℤ → (𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))) → (𝑁𝐿) ∈ (0...(#‘𝐵))))
47 lencl 13263 . . . . . . . . 9 (𝐵 ∈ Word 𝑉 → (#‘𝐵) ∈ ℕ0)
4847nn0zd 11424 . . . . . . . 8 (𝐵 ∈ Word 𝑉 → (#‘𝐵) ∈ ℤ)
4948adantl 482 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (#‘𝐵) ∈ ℤ)
5046, 49syl11 33 . . . . . 6 (𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))) → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑁𝐿) ∈ (0...(#‘𝐵))))
5150adantl 482 . . . . 5 ((𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))) → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑁𝐿) ∈ (0...(#‘𝐵))))
5251impcom 446 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → (𝑁𝐿) ∈ (0...(#‘𝐵)))
53 swrdvalfn 13364 . . . 4 ((𝐵 ∈ Word 𝑉 ∧ (𝑀𝐿) ∈ (0...(𝑁𝐿)) ∧ (𝑁𝐿) ∈ (0...(#‘𝐵))) → (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩) Fn (0..^((𝑁𝐿) − (𝑀𝐿))))
5442, 44, 52, 53syl3anc 1323 . . 3 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩) Fn (0..^((𝑁𝐿) − (𝑀𝐿))))
55 simpl 473 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
5655adantr 481 . . . . . . 7 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿)))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
57 elfzoelz 12411 . . . . . . . . 9 (𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿))) → 𝑘 ∈ ℤ)
58 elfzelz 12284 . . . . . . . . . . 11 (𝑀 ∈ (𝐿...𝑁) → 𝑀 ∈ ℤ)
59 zaddcl 11361 . . . . . . . . . . . 12 ((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑘 + 𝑀) ∈ ℤ)
6059expcom 451 . . . . . . . . . . 11 (𝑀 ∈ ℤ → (𝑘 ∈ ℤ → (𝑘 + 𝑀) ∈ ℤ))
6158, 60syl 17 . . . . . . . . . 10 (𝑀 ∈ (𝐿...𝑁) → (𝑘 ∈ ℤ → (𝑘 + 𝑀) ∈ ℤ))
6261ad2antrl 763 . . . . . . . . 9 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → (𝑘 ∈ ℤ → (𝑘 + 𝑀) ∈ ℤ))
6357, 62syl5com 31 . . . . . . . 8 (𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿))) → (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → (𝑘 + 𝑀) ∈ ℤ))
6463impcom 446 . . . . . . 7 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿)))) → (𝑘 + 𝑀) ∈ ℤ)
65 df-3an 1038 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ∧ (𝑘 + 𝑀) ∈ ℤ) ↔ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑘 + 𝑀) ∈ ℤ))
6656, 64, 65sylanbrc 697 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿)))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ∧ (𝑘 + 𝑀) ∈ ℤ))
67 ccatsymb 13305 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ∧ (𝑘 + 𝑀) ∈ ℤ) → ((𝐴 ++ 𝐵)‘(𝑘 + 𝑀)) = if((𝑘 + 𝑀) < (#‘𝐴), (𝐴‘(𝑘 + 𝑀)), (𝐵‘((𝑘 + 𝑀) − (#‘𝐴)))))
6866, 67syl 17 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿)))) → ((𝐴 ++ 𝐵)‘(𝑘 + 𝑀)) = if((𝑘 + 𝑀) < (#‘𝐴), (𝐴‘(𝑘 + 𝑀)), (𝐵‘((𝑘 + 𝑀) − (#‘𝐴)))))
69 elfzonn0 12453 . . . . . . . 8 (𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿))) → 𝑘 ∈ ℕ0)
70 zre 11325 . . . . . . . . . . . . . . . . . . 19 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
71 zre 11325 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
7270, 71anim12i 589 . . . . . . . . . . . . . . . . . 18 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ))
73 elnn0z 11334 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℤ ∧ 0 ≤ 𝑘))
74 zre 11325 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
75 0red 9985 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑀 ∈ ℝ → 0 ∈ ℝ)
7675anim1i 591 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (0 ∈ ℝ ∧ 𝐿 ∈ ℝ))
7776ancoms 469 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (0 ∈ ℝ ∧ 𝐿 ∈ ℝ))
7877adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑘 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → (0 ∈ ℝ ∧ 𝐿 ∈ ℝ))
79 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ) → 𝑀 ∈ ℝ)
8079anim2i 592 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑘 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → (𝑘 ∈ ℝ ∧ 𝑀 ∈ ℝ))
81 le2add 10454 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((0 ∈ ℝ ∧ 𝐿 ∈ ℝ) ∧ (𝑘 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → ((0 ≤ 𝑘𝐿𝑀) → (0 + 𝐿) ≤ (𝑘 + 𝑀)))
8278, 80, 81syl2anc 692 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑘 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → ((0 ≤ 𝑘𝐿𝑀) → (0 + 𝐿) ≤ (𝑘 + 𝑀)))
83 recn 9970 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐿 ∈ ℝ → 𝐿 ∈ ℂ)
8483addid2d 10181 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐿 ∈ ℝ → (0 + 𝐿) = 𝐿)
8584ad2antrl 763 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑘 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → (0 + 𝐿) = 𝐿)
8685breq1d 4623 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑘 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → ((0 + 𝐿) ≤ (𝑘 + 𝑀) ↔ 𝐿 ≤ (𝑘 + 𝑀)))
8782, 86sylibd 229 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑘 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → ((0 ≤ 𝑘𝐿𝑀) → 𝐿 ≤ (𝑘 + 𝑀)))
88 simpl 473 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ) → 𝐿 ∈ ℝ)
8988adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑘 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → 𝐿 ∈ ℝ)
90 readdcl 9963 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑘 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑘 + 𝑀) ∈ ℝ)
9180, 90syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑘 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → (𝑘 + 𝑀) ∈ ℝ)
9289, 91lenltd 10127 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑘 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → (𝐿 ≤ (𝑘 + 𝑀) ↔ ¬ (𝑘 + 𝑀) < 𝐿))
9387, 92sylibd 229 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → ((0 ≤ 𝑘𝐿𝑀) → ¬ (𝑘 + 𝑀) < 𝐿))
9493expd 452 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → (0 ≤ 𝑘 → (𝐿𝑀 → ¬ (𝑘 + 𝑀) < 𝐿)))
9594com12 32 . . . . . . . . . . . . . . . . . . . . 21 (0 ≤ 𝑘 → ((𝑘 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → (𝐿𝑀 → ¬ (𝑘 + 𝑀) < 𝐿)))
9695expd 452 . . . . . . . . . . . . . . . . . . . 20 (0 ≤ 𝑘 → (𝑘 ∈ ℝ → ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝐿𝑀 → ¬ (𝑘 + 𝑀) < 𝐿))))
9774, 96mpan9 486 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℤ ∧ 0 ≤ 𝑘) → ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝐿𝑀 → ¬ (𝑘 + 𝑀) < 𝐿)))
9873, 97sylbi 207 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ0 → ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝐿𝑀 → ¬ (𝑘 + 𝑀) < 𝐿)))
9972, 98mpan9 486 . . . . . . . . . . . . . . . . 17 (((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (𝐿𝑀 → ¬ (𝑘 + 𝑀) < 𝐿))
1001eqcomi 2630 . . . . . . . . . . . . . . . . . . 19 (#‘𝐴) = 𝐿
101100breq2i 4621 . . . . . . . . . . . . . . . . . 18 ((𝑘 + 𝑀) < (#‘𝐴) ↔ (𝑘 + 𝑀) < 𝐿)
102101notbii 310 . . . . . . . . . . . . . . . . 17 (¬ (𝑘 + 𝑀) < (#‘𝐴) ↔ ¬ (𝑘 + 𝑀) < 𝐿)
10399, 102syl6ibr 242 . . . . . . . . . . . . . . . 16 (((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (𝐿𝑀 → ¬ (𝑘 + 𝑀) < (#‘𝐴)))
104103ex 450 . . . . . . . . . . . . . . 15 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑘 ∈ ℕ0 → (𝐿𝑀 → ¬ (𝑘 + 𝑀) < (#‘𝐴))))
105104com23 86 . . . . . . . . . . . . . 14 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐿𝑀 → (𝑘 ∈ ℕ0 → ¬ (𝑘 + 𝑀) < (#‘𝐴))))
1061053adant2 1078 . . . . . . . . . . . . 13 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐿𝑀 → (𝑘 ∈ ℕ0 → ¬ (𝑘 + 𝑀) < (#‘𝐴))))
107106com12 32 . . . . . . . . . . . 12 (𝐿𝑀 → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑘 ∈ ℕ0 → ¬ (𝑘 + 𝑀) < (#‘𝐴))))
108107adantr 481 . . . . . . . . . . 11 ((𝐿𝑀𝑀𝑁) → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑘 ∈ ℕ0 → ¬ (𝑘 + 𝑀) < (#‘𝐴))))
109108impcom 446 . . . . . . . . . 10 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝐿𝑀𝑀𝑁)) → (𝑘 ∈ ℕ0 → ¬ (𝑘 + 𝑀) < (#‘𝐴)))
11026, 109sylbi 207 . . . . . . . . 9 (𝑀 ∈ (𝐿...𝑁) → (𝑘 ∈ ℕ0 → ¬ (𝑘 + 𝑀) < (#‘𝐴)))
111110ad2antrl 763 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → (𝑘 ∈ ℕ0 → ¬ (𝑘 + 𝑀) < (#‘𝐴)))
11269, 111syl5com 31 . . . . . . 7 (𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿))) → (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → ¬ (𝑘 + 𝑀) < (#‘𝐴)))
113112impcom 446 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿)))) → ¬ (𝑘 + 𝑀) < (#‘𝐴))
114113iffalsed 4069 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿)))) → if((𝑘 + 𝑀) < (#‘𝐴), (𝐴‘(𝑘 + 𝑀)), (𝐵‘((𝑘 + 𝑀) − (#‘𝐴)))) = (𝐵‘((𝑘 + 𝑀) − (#‘𝐴))))
115 zcn 11326 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
116115adantl 482 . . . . . . . . . . . . . . . 16 (((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℂ)
11728adantl 482 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℂ)
118117adantr 481 . . . . . . . . . . . . . . . 16 (((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → 𝑀 ∈ ℂ)
11929ad2antrr 761 . . . . . . . . . . . . . . . 16 (((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → 𝐿 ∈ ℂ)
120116, 118, 119addsubassd 10356 . . . . . . . . . . . . . . 15 (((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((𝑘 + 𝑀) − 𝐿) = (𝑘 + (𝑀𝐿)))
121 oveq2 6612 . . . . . . . . . . . . . . . 16 (𝐿 = (#‘𝐴) → ((𝑘 + 𝑀) − 𝐿) = ((𝑘 + 𝑀) − (#‘𝐴)))
122121eqeq1d 2623 . . . . . . . . . . . . . . 15 (𝐿 = (#‘𝐴) → (((𝑘 + 𝑀) − 𝐿) = (𝑘 + (𝑀𝐿)) ↔ ((𝑘 + 𝑀) − (#‘𝐴)) = (𝑘 + (𝑀𝐿))))
123120, 122syl5ib 234 . . . . . . . . . . . . . 14 (𝐿 = (#‘𝐴) → (((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((𝑘 + 𝑀) − (#‘𝐴)) = (𝑘 + (𝑀𝐿))))
1241, 123ax-mp 5 . . . . . . . . . . . . 13 (((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((𝑘 + 𝑀) − (#‘𝐴)) = (𝑘 + (𝑀𝐿)))
125124ex 450 . . . . . . . . . . . 12 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑘 ∈ ℤ → ((𝑘 + 𝑀) − (#‘𝐴)) = (𝑘 + (𝑀𝐿))))
1261253adant2 1078 . . . . . . . . . . 11 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑘 ∈ ℤ → ((𝑘 + 𝑀) − (#‘𝐴)) = (𝑘 + (𝑀𝐿))))
127126adantr 481 . . . . . . . . . 10 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝐿𝑀𝑀𝑁)) → (𝑘 ∈ ℤ → ((𝑘 + 𝑀) − (#‘𝐴)) = (𝑘 + (𝑀𝐿))))
12826, 127sylbi 207 . . . . . . . . 9 (𝑀 ∈ (𝐿...𝑁) → (𝑘 ∈ ℤ → ((𝑘 + 𝑀) − (#‘𝐴)) = (𝑘 + (𝑀𝐿))))
129128ad2antrl 763 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → (𝑘 ∈ ℤ → ((𝑘 + 𝑀) − (#‘𝐴)) = (𝑘 + (𝑀𝐿))))
13057, 129syl5com 31 . . . . . . 7 (𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿))) → (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → ((𝑘 + 𝑀) − (#‘𝐴)) = (𝑘 + (𝑀𝐿))))
131130impcom 446 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿)))) → ((𝑘 + 𝑀) − (#‘𝐴)) = (𝑘 + (𝑀𝐿)))
132131fveq2d 6152 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿)))) → (𝐵‘((𝑘 + 𝑀) − (#‘𝐴))) = (𝐵‘(𝑘 + (𝑀𝐿))))
13368, 114, 1323eqtrd 2659 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿)))) → ((𝐴 ++ 𝐵)‘(𝑘 + 𝑀)) = (𝐵‘(𝑘 + (𝑀𝐿))))
134 ccatcl 13298 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐴 ++ 𝐵) ∈ Word 𝑉)
135134ad2antrr 761 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿)))) → (𝐴 ++ 𝐵) ∈ Word 𝑉)
1361, 12syl5eqel 2702 . . . . . . . . . . . 12 ((#‘𝐴) ∈ ℕ0𝐿 ∈ (ℤ‘0))
137 fzss1 12322 . . . . . . . . . . . 12 (𝐿 ∈ (ℤ‘0) → (𝐿...𝑁) ⊆ (0...𝑁))
13810, 136, 1373syl 18 . . . . . . . . . . 11 (𝐴 ∈ Word 𝑉 → (𝐿...𝑁) ⊆ (0...𝑁))
139138sseld 3582 . . . . . . . . . 10 (𝐴 ∈ Word 𝑉 → (𝑀 ∈ (𝐿...𝑁) → 𝑀 ∈ (0...𝑁)))
140139adantr 481 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑀 ∈ (𝐿...𝑁) → 𝑀 ∈ (0...𝑁)))
141140com12 32 . . . . . . . 8 (𝑀 ∈ (𝐿...𝑁) → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → 𝑀 ∈ (0...𝑁)))
142141adantr 481 . . . . . . 7 ((𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))) → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → 𝑀 ∈ (0...𝑁)))
143142impcom 446 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → 𝑀 ∈ (0...𝑁))
144143adantr 481 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿)))) → 𝑀 ∈ (0...𝑁))
1451, 7ax-mp 5 . . . . . . . . 9 (𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))) ↔ 𝑁 ∈ ((#‘𝐴)...((#‘𝐴) + (#‘𝐵))))
14610, 12syl 17 . . . . . . . . . . . . . . 15 (𝐴 ∈ Word 𝑉 → (#‘𝐴) ∈ (ℤ‘0))
147146adantr 481 . . . . . . . . . . . . . 14 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (#‘𝐴) ∈ (ℤ‘0))
148147, 16syl 17 . . . . . . . . . . . . 13 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((#‘𝐴)...((#‘𝐴) + (#‘𝐵))) ⊆ (0...((#‘𝐴) + (#‘𝐵))))
149148sseld 3582 . . . . . . . . . . . 12 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑁 ∈ ((#‘𝐴)...((#‘𝐴) + (#‘𝐵))) → 𝑁 ∈ (0...((#‘𝐴) + (#‘𝐵)))))
150149impcom 446 . . . . . . . . . . 11 ((𝑁 ∈ ((#‘𝐴)...((#‘𝐴) + (#‘𝐵))) ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) → 𝑁 ∈ (0...((#‘𝐴) + (#‘𝐵))))
151 ccatlen 13299 . . . . . . . . . . . . . 14 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (#‘(𝐴 ++ 𝐵)) = ((#‘𝐴) + (#‘𝐵)))
152151oveq2d 6620 . . . . . . . . . . . . 13 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (0...(#‘(𝐴 ++ 𝐵))) = (0...((#‘𝐴) + (#‘𝐵))))
153152eleq2d 2684 . . . . . . . . . . . 12 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑁 ∈ (0...(#‘(𝐴 ++ 𝐵))) ↔ 𝑁 ∈ (0...((#‘𝐴) + (#‘𝐵)))))
154153adantl 482 . . . . . . . . . . 11 ((𝑁 ∈ ((#‘𝐴)...((#‘𝐴) + (#‘𝐵))) ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) → (𝑁 ∈ (0...(#‘(𝐴 ++ 𝐵))) ↔ 𝑁 ∈ (0...((#‘𝐴) + (#‘𝐵)))))
155150, 154mpbird 247 . . . . . . . . . 10 ((𝑁 ∈ ((#‘𝐴)...((#‘𝐴) + (#‘𝐵))) ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) → 𝑁 ∈ (0...(#‘(𝐴 ++ 𝐵))))
156155ex 450 . . . . . . . . 9 (𝑁 ∈ ((#‘𝐴)...((#‘𝐴) + (#‘𝐵))) → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → 𝑁 ∈ (0...(#‘(𝐴 ++ 𝐵)))))
157145, 156sylbi 207 . . . . . . . 8 (𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))) → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → 𝑁 ∈ (0...(#‘(𝐴 ++ 𝐵)))))
158157adantl 482 . . . . . . 7 ((𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))) → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → 𝑁 ∈ (0...(#‘(𝐴 ++ 𝐵)))))
159158impcom 446 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → 𝑁 ∈ (0...(#‘(𝐴 ++ 𝐵))))
160159adantr 481 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿)))) → 𝑁 ∈ (0...(#‘(𝐴 ++ 𝐵))))
161 fzmmmeqm 12316 . . . . . . . . . 10 (𝑀 ∈ (𝐿...𝑁) → ((𝑁𝐿) − (𝑀𝐿)) = (𝑁𝑀))
162161oveq2d 6620 . . . . . . . . 9 (𝑀 ∈ (𝐿...𝑁) → (0..^((𝑁𝐿) − (𝑀𝐿))) = (0..^(𝑁𝑀)))
163162eleq2d 2684 . . . . . . . 8 (𝑀 ∈ (𝐿...𝑁) → (𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿))) ↔ 𝑘 ∈ (0..^(𝑁𝑀))))
164163biimpd 219 . . . . . . 7 (𝑀 ∈ (𝐿...𝑁) → (𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿))) → 𝑘 ∈ (0..^(𝑁𝑀))))
165164ad2antrl 763 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → (𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿))) → 𝑘 ∈ (0..^(𝑁𝑀))))
166165imp 445 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿)))) → 𝑘 ∈ (0..^(𝑁𝑀)))
167 swrdfv 13362 . . . . 5 ((((𝐴 ++ 𝐵) ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘(𝐴 ++ 𝐵)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝑘) = ((𝐴 ++ 𝐵)‘(𝑘 + 𝑀)))
168135, 144, 160, 166, 167syl31anc 1326 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿)))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝑘) = ((𝐴 ++ 𝐵)‘(𝑘 + 𝑀)))
16948, 46syl 17 . . . . . . . . . 10 (𝐵 ∈ Word 𝑉 → (𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))) → (𝑁𝐿) ∈ (0...(#‘𝐵))))
170169adantl 482 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))) → (𝑁𝐿) ∈ (0...(#‘𝐵))))
171170com12 32 . . . . . . . 8 (𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))) → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑁𝐿) ∈ (0...(#‘𝐵))))
172171adantl 482 . . . . . . 7 ((𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))) → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑁𝐿) ∈ (0...(#‘𝐵))))
173172impcom 446 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → (𝑁𝐿) ∈ (0...(#‘𝐵)))
17442, 44, 1733jca 1240 . . . . 5 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → (𝐵 ∈ Word 𝑉 ∧ (𝑀𝐿) ∈ (0...(𝑁𝐿)) ∧ (𝑁𝐿) ∈ (0...(#‘𝐵))))
175 swrdfv 13362 . . . . 5 (((𝐵 ∈ Word 𝑉 ∧ (𝑀𝐿) ∈ (0...(𝑁𝐿)) ∧ (𝑁𝐿) ∈ (0...(#‘𝐵))) ∧ 𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿)))) → ((𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩)‘𝑘) = (𝐵‘(𝑘 + (𝑀𝐿))))
176174, 175sylan 488 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿)))) → ((𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩)‘𝑘) = (𝐵‘(𝑘 + (𝑀𝐿))))
177133, 168, 1763eqtr4d 2665 . . 3 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ 𝑘 ∈ (0..^((𝑁𝐿) − (𝑀𝐿)))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝑘) = ((𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩)‘𝑘))
17840, 54, 177eqfnfvd 6270 . 2 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩))
179178ex 450 1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wss 3555  ifcif 4058  cop 4154   class class class wbr 4613   Fn wfn 5842  cfv 5847  (class class class)co 6604  cc 9878  cr 9879  0cc0 9880   + caddc 9883   < clt 10018  cle 10019  cmin 10210  0cn0 11236  cz 11321  cuz 11631  ...cfz 12268  ..^cfzo 12406  #chash 13057  Word cword 13230   ++ cconcat 13232   substr csubstr 13234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-fzo 12407  df-hash 13058  df-word 13238  df-concat 13240  df-substr 13242
This theorem is referenced by:  swrdccat3  13429  swrdccatin2d  13437  pfxccat3  40725
  Copyright terms: Public domain W3C validator