MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdfv2 Structured version   Visualization version   GIF version

Theorem swrdfv2 13492
Description: A symbol in an extracted subword, indexed using the word's indices. (Contributed by AV, 5-May-2020.)
Assertion
Ref Expression
swrdfv2 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (#‘𝑆)) ∧ 𝑋 ∈ (𝐹..^𝐿)) → ((𝑆 substr ⟨𝐹, 𝐿⟩)‘(𝑋𝐹)) = (𝑆𝑋))

Proof of Theorem swrdfv2
StepHypRef Expression
1 simp1 1081 . . . . 5 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (#‘𝑆)) → 𝑆 ∈ Word 𝑉)
2 simpl 472 . . . . . . . 8 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → 𝐹 ∈ ℕ0)
3 eluznn0 11795 . . . . . . . 8 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → 𝐿 ∈ ℕ0)
4 eluzle 11738 . . . . . . . . 9 (𝐿 ∈ (ℤ𝐹) → 𝐹𝐿)
54adantl 481 . . . . . . . 8 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → 𝐹𝐿)
62, 3, 53jca 1261 . . . . . . 7 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → (𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿))
763ad2ant2 1103 . . . . . 6 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (#‘𝑆)) → (𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿))
8 elfz2nn0 12469 . . . . . 6 (𝐹 ∈ (0...𝐿) ↔ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿))
97, 8sylibr 224 . . . . 5 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (#‘𝑆)) → 𝐹 ∈ (0...𝐿))
103anim1i 591 . . . . . . 7 (((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (#‘𝑆)) → (𝐿 ∈ ℕ0𝐿 ≤ (#‘𝑆)))
11103adant1 1099 . . . . . 6 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (#‘𝑆)) → (𝐿 ∈ ℕ0𝐿 ≤ (#‘𝑆)))
12 lencl 13356 . . . . . . . 8 (𝑆 ∈ Word 𝑉 → (#‘𝑆) ∈ ℕ0)
13123ad2ant1 1102 . . . . . . 7 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (#‘𝑆)) → (#‘𝑆) ∈ ℕ0)
14 fznn0 12470 . . . . . . 7 ((#‘𝑆) ∈ ℕ0 → (𝐿 ∈ (0...(#‘𝑆)) ↔ (𝐿 ∈ ℕ0𝐿 ≤ (#‘𝑆))))
1513, 14syl 17 . . . . . 6 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (#‘𝑆)) → (𝐿 ∈ (0...(#‘𝑆)) ↔ (𝐿 ∈ ℕ0𝐿 ≤ (#‘𝑆))))
1611, 15mpbird 247 . . . . 5 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (#‘𝑆)) → 𝐿 ∈ (0...(#‘𝑆)))
171, 9, 163jca 1261 . . . 4 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (#‘𝑆)) → (𝑆 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(#‘𝑆))))
1817adantr 480 . . 3 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (#‘𝑆)) ∧ 𝑋 ∈ (𝐹..^𝐿)) → (𝑆 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(#‘𝑆))))
19 nn0cn 11340 . . . . . . . . . 10 (𝐹 ∈ ℕ0𝐹 ∈ ℂ)
20 eluzelcn 11737 . . . . . . . . . 10 (𝐿 ∈ (ℤ𝐹) → 𝐿 ∈ ℂ)
21 pncan3 10327 . . . . . . . . . 10 ((𝐹 ∈ ℂ ∧ 𝐿 ∈ ℂ) → (𝐹 + (𝐿𝐹)) = 𝐿)
2219, 20, 21syl2an 493 . . . . . . . . 9 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → (𝐹 + (𝐿𝐹)) = 𝐿)
2322eqcomd 2657 . . . . . . . 8 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → 𝐿 = (𝐹 + (𝐿𝐹)))
24233ad2ant2 1103 . . . . . . 7 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (#‘𝑆)) → 𝐿 = (𝐹 + (𝐿𝐹)))
2524oveq2d 6706 . . . . . 6 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (#‘𝑆)) → (𝐹..^𝐿) = (𝐹..^(𝐹 + (𝐿𝐹))))
2625eleq2d 2716 . . . . 5 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (#‘𝑆)) → (𝑋 ∈ (𝐹..^𝐿) ↔ 𝑋 ∈ (𝐹..^(𝐹 + (𝐿𝐹)))))
2726biimpa 500 . . . 4 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (#‘𝑆)) ∧ 𝑋 ∈ (𝐹..^𝐿)) → 𝑋 ∈ (𝐹..^(𝐹 + (𝐿𝐹))))
28 eluzelz 11735 . . . . . . . 8 (𝐿 ∈ (ℤ𝐹) → 𝐿 ∈ ℤ)
2928adantl 481 . . . . . . 7 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → 𝐿 ∈ ℤ)
30 nn0z 11438 . . . . . . . 8 (𝐹 ∈ ℕ0𝐹 ∈ ℤ)
3130adantr 480 . . . . . . 7 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → 𝐹 ∈ ℤ)
3229, 31zsubcld 11525 . . . . . 6 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → (𝐿𝐹) ∈ ℤ)
33323ad2ant2 1103 . . . . 5 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (#‘𝑆)) → (𝐿𝐹) ∈ ℤ)
3433adantr 480 . . . 4 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (#‘𝑆)) ∧ 𝑋 ∈ (𝐹..^𝐿)) → (𝐿𝐹) ∈ ℤ)
35 fzosubel3 12568 . . . 4 ((𝑋 ∈ (𝐹..^(𝐹 + (𝐿𝐹))) ∧ (𝐿𝐹) ∈ ℤ) → (𝑋𝐹) ∈ (0..^(𝐿𝐹)))
3627, 34, 35syl2anc 694 . . 3 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (#‘𝑆)) ∧ 𝑋 ∈ (𝐹..^𝐿)) → (𝑋𝐹) ∈ (0..^(𝐿𝐹)))
37 swrdfv 13469 . . 3 (((𝑆 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(#‘𝑆))) ∧ (𝑋𝐹) ∈ (0..^(𝐿𝐹))) → ((𝑆 substr ⟨𝐹, 𝐿⟩)‘(𝑋𝐹)) = (𝑆‘((𝑋𝐹) + 𝐹)))
3818, 36, 37syl2anc 694 . 2 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (#‘𝑆)) ∧ 𝑋 ∈ (𝐹..^𝐿)) → ((𝑆 substr ⟨𝐹, 𝐿⟩)‘(𝑋𝐹)) = (𝑆‘((𝑋𝐹) + 𝐹)))
39 elfzoelz 12509 . . . . 5 (𝑋 ∈ (𝐹..^𝐿) → 𝑋 ∈ ℤ)
4039zcnd 11521 . . . 4 (𝑋 ∈ (𝐹..^𝐿) → 𝑋 ∈ ℂ)
4119adantr 480 . . . . 5 ((𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) → 𝐹 ∈ ℂ)
42413ad2ant2 1103 . . . 4 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (#‘𝑆)) → 𝐹 ∈ ℂ)
43 npcan 10328 . . . 4 ((𝑋 ∈ ℂ ∧ 𝐹 ∈ ℂ) → ((𝑋𝐹) + 𝐹) = 𝑋)
4440, 42, 43syl2anr 494 . . 3 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (#‘𝑆)) ∧ 𝑋 ∈ (𝐹..^𝐿)) → ((𝑋𝐹) + 𝐹) = 𝑋)
4544fveq2d 6233 . 2 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (#‘𝑆)) ∧ 𝑋 ∈ (𝐹..^𝐿)) → (𝑆‘((𝑋𝐹) + 𝐹)) = (𝑆𝑋))
4638, 45eqtrd 2685 1 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (#‘𝑆)) ∧ 𝑋 ∈ (𝐹..^𝐿)) → ((𝑆 substr ⟨𝐹, 𝐿⟩)‘(𝑋𝐹)) = (𝑆𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  cop 4216   class class class wbr 4685  cfv 5926  (class class class)co 6690  cc 9972  0cc0 9974   + caddc 9977  cle 10113  cmin 10304  0cn0 11330  cz 11415  cuz 11725  ...cfz 12364  ..^cfzo 12504  #chash 13157  Word cword 13323   substr csubstr 13327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-hash 13158  df-word 13331  df-substr 13335
This theorem is referenced by:  swrdspsleq  13495
  Copyright terms: Public domain W3C validator