MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdspsleq Structured version   Visualization version   GIF version

Theorem swrdspsleq 13394
Description: Two words have a common subword (starting at the same position with the same length) iff they have the same symbols at each position. (Contributed by Alexander van der Vekens, 7-Aug-2018.) (Proof shortened by AV, 7-May-2020.)
Assertion
Ref Expression
swrdspsleq (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑈 substr ⟨𝑀, 𝑁⟩) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖)))
Distinct variable groups:   𝑖,𝑀   𝑖,𝑁   𝑈,𝑖   𝑖,𝑉   𝑖,𝑊

Proof of Theorem swrdspsleq
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 simpr1 1065 . . . 4 ((𝑁𝑀 ∧ ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈)))) → (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉))
2 simpr2 1066 . . . 4 ((𝑁𝑀 ∧ ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈)))) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))
3 simpl 473 . . . 4 ((𝑁𝑀 ∧ ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈)))) → 𝑁𝑀)
4 swrdsb0eq 13392 . . . 4 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝑀) → (𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑈 substr ⟨𝑀, 𝑁⟩))
51, 2, 3, 4syl3anc 1323 . . 3 ((𝑁𝑀 ∧ ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈)))) → (𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑈 substr ⟨𝑀, 𝑁⟩))
6 ral0 4053 . . . . . . 7 𝑖 ∈ ∅ (𝑊𝑖) = (𝑈𝑖)
7 nn0z 11351 . . . . . . . . . 10 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
8 nn0z 11351 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
9 fzon 12437 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝑀 ↔ (𝑀..^𝑁) = ∅))
107, 8, 9syl2an 494 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝑀 ↔ (𝑀..^𝑁) = ∅))
1110biimpa 501 . . . . . . . 8 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝑀) → (𝑀..^𝑁) = ∅)
1211raleqdv 3136 . . . . . . 7 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝑀) → (∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖) ↔ ∀𝑖 ∈ ∅ (𝑊𝑖) = (𝑈𝑖)))
136, 12mpbiri 248 . . . . . 6 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝑀) → ∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖))
1413ex 450 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝑀 → ∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖)))
15143ad2ant2 1081 . . . 4 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → (𝑁𝑀 → ∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖)))
1615impcom 446 . . 3 ((𝑁𝑀 ∧ ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈)))) → ∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖))
175, 162thd 255 . 2 ((𝑁𝑀 ∧ ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈)))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑈 substr ⟨𝑀, 𝑁⟩) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖)))
18 swrdcl 13364 . . . . . 6 (𝑊 ∈ Word 𝑉 → (𝑊 substr ⟨𝑀, 𝑁⟩) ∈ Word 𝑉)
19 swrdcl 13364 . . . . . 6 (𝑈 ∈ Word 𝑉 → (𝑈 substr ⟨𝑀, 𝑁⟩) ∈ Word 𝑉)
20 eqwrd 13292 . . . . . 6 (((𝑊 substr ⟨𝑀, 𝑁⟩) ∈ Word 𝑉 ∧ (𝑈 substr ⟨𝑀, 𝑁⟩) ∈ Word 𝑉) → ((𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑈 substr ⟨𝑀, 𝑁⟩) ↔ ((#‘(𝑊 substr ⟨𝑀, 𝑁⟩)) = (#‘(𝑈 substr ⟨𝑀, 𝑁⟩)) ∧ ∀𝑗 ∈ (0..^(#‘(𝑊 substr ⟨𝑀, 𝑁⟩)))((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗))))
2118, 19, 20syl2an 494 . . . . 5 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) → ((𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑈 substr ⟨𝑀, 𝑁⟩) ↔ ((#‘(𝑊 substr ⟨𝑀, 𝑁⟩)) = (#‘(𝑈 substr ⟨𝑀, 𝑁⟩)) ∧ ∀𝑗 ∈ (0..^(#‘(𝑊 substr ⟨𝑀, 𝑁⟩)))((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗))))
22213ad2ant1 1080 . . . 4 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑈 substr ⟨𝑀, 𝑁⟩) ↔ ((#‘(𝑊 substr ⟨𝑀, 𝑁⟩)) = (#‘(𝑈 substr ⟨𝑀, 𝑁⟩)) ∧ ∀𝑗 ∈ (0..^(#‘(𝑊 substr ⟨𝑀, 𝑁⟩)))((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗))))
2322adantl 482 . . 3 ((¬ 𝑁𝑀 ∧ ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈)))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑈 substr ⟨𝑀, 𝑁⟩) ↔ ((#‘(𝑊 substr ⟨𝑀, 𝑁⟩)) = (#‘(𝑈 substr ⟨𝑀, 𝑁⟩)) ∧ ∀𝑗 ∈ (0..^(#‘(𝑊 substr ⟨𝑀, 𝑁⟩)))((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗))))
24 swrdsbslen 13393 . . . . 5 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → (#‘(𝑊 substr ⟨𝑀, 𝑁⟩)) = (#‘(𝑈 substr ⟨𝑀, 𝑁⟩)))
2524adantl 482 . . . 4 ((¬ 𝑁𝑀 ∧ ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈)))) → (#‘(𝑊 substr ⟨𝑀, 𝑁⟩)) = (#‘(𝑈 substr ⟨𝑀, 𝑁⟩)))
2625biantrurd 529 . . 3 ((¬ 𝑁𝑀 ∧ ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈)))) → (∀𝑗 ∈ (0..^(#‘(𝑊 substr ⟨𝑀, 𝑁⟩)))((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ ((#‘(𝑊 substr ⟨𝑀, 𝑁⟩)) = (#‘(𝑈 substr ⟨𝑀, 𝑁⟩)) ∧ ∀𝑗 ∈ (0..^(#‘(𝑊 substr ⟨𝑀, 𝑁⟩)))((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗))))
27 nn0re 11252 . . . . . . 7 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
28 nn0re 11252 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
29 ltnle 10068 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 < 𝑁 ↔ ¬ 𝑁𝑀))
30 ltle 10077 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 < 𝑁𝑀𝑁))
3129, 30sylbird 250 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (¬ 𝑁𝑀𝑀𝑁))
3227, 28, 31syl2an 494 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 𝑁𝑀𝑀𝑁))
33323ad2ant2 1081 . . . . 5 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → (¬ 𝑁𝑀𝑀𝑁))
34 simpl1l 1110 . . . . . . . . . . 11 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀𝑁) → 𝑊 ∈ Word 𝑉)
35 simpl 473 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑀 ∈ ℕ0)
36353ad2ant2 1081 . . . . . . . . . . . . 13 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → 𝑀 ∈ ℕ0)
3736adantr 481 . . . . . . . . . . . 12 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀𝑁) → 𝑀 ∈ ℕ0)
387, 8anim12i 589 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
39383ad2ant2 1081 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
4039anim1i 591 . . . . . . . . . . . . . 14 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁))
41 df-3an 1038 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁))
4240, 41sylibr 224 . . . . . . . . . . . . 13 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀𝑁) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
43 eluz2 11644 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
4442, 43sylibr 224 . . . . . . . . . . . 12 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀𝑁) → 𝑁 ∈ (ℤ𝑀))
4537, 44jca 554 . . . . . . . . . . 11 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀𝑁) → (𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)))
46 simpl 473 . . . . . . . . . . . . 13 ((𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈)) → 𝑁 ≤ (#‘𝑊))
47463ad2ant3 1082 . . . . . . . . . . . 12 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → 𝑁 ≤ (#‘𝑊))
4847adantr 481 . . . . . . . . . . 11 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀𝑁) → 𝑁 ≤ (#‘𝑊))
4934, 45, 483jca 1240 . . . . . . . . . 10 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀𝑁) → (𝑊 ∈ Word 𝑉 ∧ (𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) ∧ 𝑁 ≤ (#‘𝑊)))
50 swrdlen2 13390 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ (𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) ∧ 𝑁 ≤ (#‘𝑊)) → (#‘(𝑊 substr ⟨𝑀, 𝑁⟩)) = (𝑁𝑀))
5149, 50syl 17 . . . . . . . . 9 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀𝑁) → (#‘(𝑊 substr ⟨𝑀, 𝑁⟩)) = (𝑁𝑀))
5251oveq2d 6626 . . . . . . . 8 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀𝑁) → (0..^(#‘(𝑊 substr ⟨𝑀, 𝑁⟩))) = (0..^(𝑁𝑀)))
5352raleqdv 3136 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀𝑁) → (∀𝑗 ∈ (0..^(#‘(𝑊 substr ⟨𝑀, 𝑁⟩)))((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ ∀𝑗 ∈ (0..^(𝑁𝑀))((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗)))
54 0zd 11340 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → 0 ∈ ℤ)
55 zsubcl 11370 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁𝑀) ∈ ℤ)
568, 7, 55syl2anr 495 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝑀) ∈ ℤ)
57563ad2ant2 1081 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → (𝑁𝑀) ∈ ℤ)
587adantr 481 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑀 ∈ ℤ)
59583ad2ant2 1081 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → 𝑀 ∈ ℤ)
60 fzoshftral 12532 . . . . . . . . . 10 ((0 ∈ ℤ ∧ (𝑁𝑀) ∈ ℤ ∧ 𝑀 ∈ ℤ) → (∀𝑗 ∈ (0..^(𝑁𝑀))((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ ∀𝑖 ∈ ((0 + 𝑀)..^((𝑁𝑀) + 𝑀))[(𝑖𝑀) / 𝑗]((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗)))
6154, 57, 59, 60syl3anc 1323 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → (∀𝑗 ∈ (0..^(𝑁𝑀))((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ ∀𝑖 ∈ ((0 + 𝑀)..^((𝑁𝑀) + 𝑀))[(𝑖𝑀) / 𝑗]((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗)))
6261adantr 481 . . . . . . . 8 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀𝑁) → (∀𝑗 ∈ (0..^(𝑁𝑀))((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ ∀𝑖 ∈ ((0 + 𝑀)..^((𝑁𝑀) + 𝑀))[(𝑖𝑀) / 𝑗]((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗)))
63 nn0cn 11253 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
64 nn0cn 11253 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
65 addid2 10170 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℂ → (0 + 𝑀) = 𝑀)
6665adantl 482 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (0 + 𝑀) = 𝑀)
67 npcan 10241 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑁𝑀) + 𝑀) = 𝑁)
6866, 67oveq12d 6628 . . . . . . . . . . . . 13 ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((0 + 𝑀)..^((𝑁𝑀) + 𝑀)) = (𝑀..^𝑁))
6963, 64, 68syl2anr 495 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((0 + 𝑀)..^((𝑁𝑀) + 𝑀)) = (𝑀..^𝑁))
70693ad2ant2 1081 . . . . . . . . . . 11 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → ((0 + 𝑀)..^((𝑁𝑀) + 𝑀)) = (𝑀..^𝑁))
7170adantr 481 . . . . . . . . . 10 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀𝑁) → ((0 + 𝑀)..^((𝑁𝑀) + 𝑀)) = (𝑀..^𝑁))
7271raleqdv 3136 . . . . . . . . 9 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀𝑁) → (∀𝑖 ∈ ((0 + 𝑀)..^((𝑁𝑀) + 𝑀))[(𝑖𝑀) / 𝑗]((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ ∀𝑖 ∈ (𝑀..^𝑁)[(𝑖𝑀) / 𝑗]((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗)))
73 ovex 6638 . . . . . . . . . . . 12 (𝑖𝑀) ∈ V
74 sbceqg 3961 . . . . . . . . . . . . 13 ((𝑖𝑀) ∈ V → ([(𝑖𝑀) / 𝑗]((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ (𝑖𝑀) / 𝑗((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = (𝑖𝑀) / 𝑗((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗)))
75 csbfv2g 6194 . . . . . . . . . . . . . . 15 ((𝑖𝑀) ∈ V → (𝑖𝑀) / 𝑗((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀) / 𝑗𝑗))
76 csbvarg 3980 . . . . . . . . . . . . . . . 16 ((𝑖𝑀) ∈ V → (𝑖𝑀) / 𝑗𝑗 = (𝑖𝑀))
7776fveq2d 6157 . . . . . . . . . . . . . . 15 ((𝑖𝑀) ∈ V → ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀) / 𝑗𝑗) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀)))
7875, 77eqtrd 2655 . . . . . . . . . . . . . 14 ((𝑖𝑀) ∈ V → (𝑖𝑀) / 𝑗((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀)))
79 csbfv2g 6194 . . . . . . . . . . . . . . 15 ((𝑖𝑀) ∈ V → (𝑖𝑀) / 𝑗((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀) / 𝑗𝑗))
8076fveq2d 6157 . . . . . . . . . . . . . . 15 ((𝑖𝑀) ∈ V → ((𝑈 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀) / 𝑗𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀)))
8179, 80eqtrd 2655 . . . . . . . . . . . . . 14 ((𝑖𝑀) ∈ V → (𝑖𝑀) / 𝑗((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀)))
8278, 81eqeq12d 2636 . . . . . . . . . . . . 13 ((𝑖𝑀) ∈ V → ((𝑖𝑀) / 𝑗((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = (𝑖𝑀) / 𝑗((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀)) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀))))
8374, 82bitrd 268 . . . . . . . . . . . 12 ((𝑖𝑀) ∈ V → ([(𝑖𝑀) / 𝑗]((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀)) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀))))
8473, 83mp1i 13 . . . . . . . . . . 11 (((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀𝑁) ∧ 𝑖 ∈ (𝑀..^𝑁)) → ([(𝑖𝑀) / 𝑗]((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀)) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀))))
85 swrdfv2 13391 . . . . . . . . . . . . 13 (((𝑊 ∈ Word 𝑉 ∧ (𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) ∧ 𝑁 ≤ (#‘𝑊)) ∧ 𝑖 ∈ (𝑀..^𝑁)) → ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀)) = (𝑊𝑖))
8649, 85sylan 488 . . . . . . . . . . . 12 (((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀𝑁) ∧ 𝑖 ∈ (𝑀..^𝑁)) → ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀)) = (𝑊𝑖))
87 simpl1r 1111 . . . . . . . . . . . . . 14 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀𝑁) → 𝑈 ∈ Word 𝑉)
88 simpl3r 1115 . . . . . . . . . . . . . 14 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀𝑁) → 𝑁 ≤ (#‘𝑈))
8987, 45, 883jca 1240 . . . . . . . . . . . . 13 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀𝑁) → (𝑈 ∈ Word 𝑉 ∧ (𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) ∧ 𝑁 ≤ (#‘𝑈)))
90 swrdfv2 13391 . . . . . . . . . . . . 13 (((𝑈 ∈ Word 𝑉 ∧ (𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) ∧ 𝑁 ≤ (#‘𝑈)) ∧ 𝑖 ∈ (𝑀..^𝑁)) → ((𝑈 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀)) = (𝑈𝑖))
9189, 90sylan 488 . . . . . . . . . . . 12 (((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀𝑁) ∧ 𝑖 ∈ (𝑀..^𝑁)) → ((𝑈 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀)) = (𝑈𝑖))
9286, 91eqeq12d 2636 . . . . . . . . . . 11 (((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀𝑁) ∧ 𝑖 ∈ (𝑀..^𝑁)) → (((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀)) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀)) ↔ (𝑊𝑖) = (𝑈𝑖)))
9384, 92bitrd 268 . . . . . . . . . 10 (((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀𝑁) ∧ 𝑖 ∈ (𝑀..^𝑁)) → ([(𝑖𝑀) / 𝑗]((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ (𝑊𝑖) = (𝑈𝑖)))
9493ralbidva 2980 . . . . . . . . 9 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀𝑁) → (∀𝑖 ∈ (𝑀..^𝑁)[(𝑖𝑀) / 𝑗]((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖)))
9572, 94bitrd 268 . . . . . . . 8 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀𝑁) → (∀𝑖 ∈ ((0 + 𝑀)..^((𝑁𝑀) + 𝑀))[(𝑖𝑀) / 𝑗]((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖)))
9662, 95bitrd 268 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀𝑁) → (∀𝑗 ∈ (0..^(𝑁𝑀))((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖)))
9753, 96bitrd 268 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀𝑁) → (∀𝑗 ∈ (0..^(#‘(𝑊 substr ⟨𝑀, 𝑁⟩)))((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖)))
9897ex 450 . . . . 5 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → (𝑀𝑁 → (∀𝑗 ∈ (0..^(#‘(𝑊 substr ⟨𝑀, 𝑁⟩)))((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖))))
9933, 98syld 47 . . . 4 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → (¬ 𝑁𝑀 → (∀𝑗 ∈ (0..^(#‘(𝑊 substr ⟨𝑀, 𝑁⟩)))((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖))))
10099impcom 446 . . 3 ((¬ 𝑁𝑀 ∧ ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈)))) → (∀𝑗 ∈ (0..^(#‘(𝑊 substr ⟨𝑀, 𝑁⟩)))((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖)))
10123, 26, 1003bitr2d 296 . 2 ((¬ 𝑁𝑀 ∧ ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈)))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑈 substr ⟨𝑀, 𝑁⟩) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖)))
10217, 101pm2.61ian 830 1 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑈 substr ⟨𝑀, 𝑁⟩) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  Vcvv 3189  [wsbc 3421  csb 3518  c0 3896  cop 4159   class class class wbr 4618  cfv 5852  (class class class)co 6610  cc 9885  cr 9886  0cc0 9887   + caddc 9890   < clt 10025  cle 10026  cmin 10217  0cn0 11243  cz 11328  cuz 11638  ..^cfzo 12413  #chash 13064  Word cword 13237   substr csubstr 13241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-card 8716  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-nn 10972  df-n0 11244  df-z 11329  df-uz 11639  df-fz 12276  df-fzo 12414  df-hash 13065  df-word 13245  df-substr 13249
This theorem is referenced by:  2swrdeqwrdeq  13398  clwwlksf1  26796  pfxsuffeqwrdeq  40726
  Copyright terms: Public domain W3C validator