Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sxbrsigalem3 Structured version   Visualization version   GIF version

Theorem sxbrsigalem3 30462
Description: The sigma-algebra generated by the closed half-spaces of (ℝ × ℝ) is a subset of the sigma-algebra generated by the closed sets of (ℝ × ℝ). (Contributed by Thierry Arnoux, 11-Oct-2017.)
Hypothesis
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
Assertion
Ref Expression
sxbrsigalem3 (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ⊆ (sigaGen‘(Clsd‘(𝐽 ×t 𝐽)))
Distinct variable group:   𝑒,𝑓
Allowed substitution hints:   𝐽(𝑒,𝑓)

Proof of Theorem sxbrsigalem3
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sxbrsigalem0 30461 . . 3 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) = (ℝ × ℝ)
2 sxbrsiga.0 . . . . . 6 𝐽 = (topGen‘ran (,))
3 retop 22612 . . . . . 6 (topGen‘ran (,)) ∈ Top
42, 3eqeltri 2726 . . . . 5 𝐽 ∈ Top
54, 4txtopi 21441 . . . 4 (𝐽 ×t 𝐽) ∈ Top
6 uniretop 22613 . . . . . 6 ℝ = (topGen‘ran (,))
72unieqi 4477 . . . . . 6 𝐽 = (topGen‘ran (,))
86, 7eqtr4i 2676 . . . . 5 ℝ = 𝐽
94, 4, 8, 8txunii 21444 . . . 4 (ℝ × ℝ) = (𝐽 ×t 𝐽)
105, 9unicls 30077 . . 3 (Clsd‘(𝐽 ×t 𝐽)) = (ℝ × ℝ)
111, 10eqtr4i 2676 . 2 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) = (Clsd‘(𝐽 ×t 𝐽))
12 ovex 6718 . . . . . . 7 (𝑒[,)+∞) ∈ V
13 reex 10065 . . . . . . 7 ℝ ∈ V
1412, 13xpex 7004 . . . . . 6 ((𝑒[,)+∞) × ℝ) ∈ V
15 eqid 2651 . . . . . 6 (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) = (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))
1614, 15fnmpti 6060 . . . . 5 (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) Fn ℝ
17 oveq1 6697 . . . . . . . . 9 (𝑒 = 𝑢 → (𝑒[,)+∞) = (𝑢[,)+∞))
1817xpeq1d 5172 . . . . . . . 8 (𝑒 = 𝑢 → ((𝑒[,)+∞) × ℝ) = ((𝑢[,)+∞) × ℝ))
19 ovex 6718 . . . . . . . . 9 (𝑢[,)+∞) ∈ V
2019, 13xpex 7004 . . . . . . . 8 ((𝑢[,)+∞) × ℝ) ∈ V
2118, 15, 20fvmpt 6321 . . . . . . 7 (𝑢 ∈ ℝ → ((𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))‘𝑢) = ((𝑢[,)+∞) × ℝ))
22 icopnfcld 22618 . . . . . . . . 9 (𝑢 ∈ ℝ → (𝑢[,)+∞) ∈ (Clsd‘(topGen‘ran (,))))
232fveq2i 6232 . . . . . . . . 9 (Clsd‘𝐽) = (Clsd‘(topGen‘ran (,)))
2422, 23syl6eleqr 2741 . . . . . . . 8 (𝑢 ∈ ℝ → (𝑢[,)+∞) ∈ (Clsd‘𝐽))
25 dif0 3983 . . . . . . . . 9 (ℝ ∖ ∅) = ℝ
26 0opn 20757 . . . . . . . . . . 11 (𝐽 ∈ Top → ∅ ∈ 𝐽)
274, 26ax-mp 5 . . . . . . . . . 10 ∅ ∈ 𝐽
288opncld 20885 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ ∅ ∈ 𝐽) → (ℝ ∖ ∅) ∈ (Clsd‘𝐽))
294, 27, 28mp2an 708 . . . . . . . . 9 (ℝ ∖ ∅) ∈ (Clsd‘𝐽)
3025, 29eqeltrri 2727 . . . . . . . 8 ℝ ∈ (Clsd‘𝐽)
31 txcld 21454 . . . . . . . 8 (((𝑢[,)+∞) ∈ (Clsd‘𝐽) ∧ ℝ ∈ (Clsd‘𝐽)) → ((𝑢[,)+∞) × ℝ) ∈ (Clsd‘(𝐽 ×t 𝐽)))
3224, 30, 31sylancl 695 . . . . . . 7 (𝑢 ∈ ℝ → ((𝑢[,)+∞) × ℝ) ∈ (Clsd‘(𝐽 ×t 𝐽)))
3321, 32eqeltrd 2730 . . . . . 6 (𝑢 ∈ ℝ → ((𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))‘𝑢) ∈ (Clsd‘(𝐽 ×t 𝐽)))
3433rgen 2951 . . . . 5 𝑢 ∈ ℝ ((𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))‘𝑢) ∈ (Clsd‘(𝐽 ×t 𝐽))
35 fnfvrnss 6430 . . . . 5 (((𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) Fn ℝ ∧ ∀𝑢 ∈ ℝ ((𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))‘𝑢) ∈ (Clsd‘(𝐽 ×t 𝐽))) → ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ⊆ (Clsd‘(𝐽 ×t 𝐽)))
3616, 34, 35mp2an 708 . . . 4 ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ⊆ (Clsd‘(𝐽 ×t 𝐽))
37 ovex 6718 . . . . . . 7 (𝑓[,)+∞) ∈ V
3813, 37xpex 7004 . . . . . 6 (ℝ × (𝑓[,)+∞)) ∈ V
39 eqid 2651 . . . . . 6 (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) = (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))
4038, 39fnmpti 6060 . . . . 5 (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) Fn ℝ
41 oveq1 6697 . . . . . . . . 9 (𝑓 = 𝑣 → (𝑓[,)+∞) = (𝑣[,)+∞))
4241xpeq2d 5173 . . . . . . . 8 (𝑓 = 𝑣 → (ℝ × (𝑓[,)+∞)) = (ℝ × (𝑣[,)+∞)))
43 ovex 6718 . . . . . . . . 9 (𝑣[,)+∞) ∈ V
4413, 43xpex 7004 . . . . . . . 8 (ℝ × (𝑣[,)+∞)) ∈ V
4542, 39, 44fvmpt 6321 . . . . . . 7 (𝑣 ∈ ℝ → ((𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))‘𝑣) = (ℝ × (𝑣[,)+∞)))
46 icopnfcld 22618 . . . . . . . . 9 (𝑣 ∈ ℝ → (𝑣[,)+∞) ∈ (Clsd‘(topGen‘ran (,))))
4746, 23syl6eleqr 2741 . . . . . . . 8 (𝑣 ∈ ℝ → (𝑣[,)+∞) ∈ (Clsd‘𝐽))
48 txcld 21454 . . . . . . . 8 ((ℝ ∈ (Clsd‘𝐽) ∧ (𝑣[,)+∞) ∈ (Clsd‘𝐽)) → (ℝ × (𝑣[,)+∞)) ∈ (Clsd‘(𝐽 ×t 𝐽)))
4930, 47, 48sylancr 696 . . . . . . 7 (𝑣 ∈ ℝ → (ℝ × (𝑣[,)+∞)) ∈ (Clsd‘(𝐽 ×t 𝐽)))
5045, 49eqeltrd 2730 . . . . . 6 (𝑣 ∈ ℝ → ((𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))‘𝑣) ∈ (Clsd‘(𝐽 ×t 𝐽)))
5150rgen 2951 . . . . 5 𝑣 ∈ ℝ ((𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))‘𝑣) ∈ (Clsd‘(𝐽 ×t 𝐽))
52 fnfvrnss 6430 . . . . 5 (((𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) Fn ℝ ∧ ∀𝑣 ∈ ℝ ((𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))‘𝑣) ∈ (Clsd‘(𝐽 ×t 𝐽))) → ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) ⊆ (Clsd‘(𝐽 ×t 𝐽)))
5340, 51, 52mp2an 708 . . . 4 ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) ⊆ (Clsd‘(𝐽 ×t 𝐽))
5436, 53unssi 3821 . . 3 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ⊆ (Clsd‘(𝐽 ×t 𝐽))
55 fvex 6239 . . . 4 (Clsd‘(𝐽 ×t 𝐽)) ∈ V
56 sssigagen 30336 . . . 4 ((Clsd‘(𝐽 ×t 𝐽)) ∈ V → (Clsd‘(𝐽 ×t 𝐽)) ⊆ (sigaGen‘(Clsd‘(𝐽 ×t 𝐽))))
5755, 56ax-mp 5 . . 3 (Clsd‘(𝐽 ×t 𝐽)) ⊆ (sigaGen‘(Clsd‘(𝐽 ×t 𝐽)))
5854, 57sstri 3645 . 2 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ⊆ (sigaGen‘(Clsd‘(𝐽 ×t 𝐽)))
59 sigagenss2 30341 . 2 (( (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) = (Clsd‘(𝐽 ×t 𝐽)) ∧ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ⊆ (sigaGen‘(Clsd‘(𝐽 ×t 𝐽))) ∧ (Clsd‘(𝐽 ×t 𝐽)) ∈ V) → (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ⊆ (sigaGen‘(Clsd‘(𝐽 ×t 𝐽))))
6011, 58, 55, 59mp3an 1464 1 (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ⊆ (sigaGen‘(Clsd‘(𝐽 ×t 𝐽)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1523  wcel 2030  wral 2941  Vcvv 3231  cdif 3604  cun 3605  wss 3607  c0 3948   cuni 4468  cmpt 4762   × cxp 5141  ran crn 5144   Fn wfn 5921  cfv 5926  (class class class)co 6690  cr 9973  +∞cpnf 10109  (,)cioo 12213  [,)cico 12215  topGenctg 16145  Topctop 20746  Clsdccld 20868   ×t ctx 21411  sigaGencsigagen 30329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-ioo 12217  df-ico 12219  df-topgen 16151  df-top 20747  df-topon 20764  df-bases 20798  df-cld 20871  df-tx 21413  df-siga 30299  df-sigagen 30330
This theorem is referenced by:  sxbrsigalem4  30477
  Copyright terms: Public domain W3C validator