![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sxbrsigalem4 | Structured version Visualization version GIF version |
Description: The Borel algebra on (ℝ × ℝ) is generated by the dyadic closed-below, open-above rectangular subsets of (ℝ × ℝ). Proposition 1.1.5 of [Cohn] p. 4 . Note that the interval used in this formalization are closed-below, open-above instead of open-below, closed-above in the proof as they are ultimately generated by the floor function. (Contributed by Thierry Arnoux, 21-Sep-2017.) |
Ref | Expression |
---|---|
sxbrsiga.0 | ⊢ 𝐽 = (topGen‘ran (,)) |
dya2ioc.1 | ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) |
dya2ioc.2 | ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) |
Ref | Expression |
---|---|
sxbrsigalem4 | ⊢ (sigaGen‘(𝐽 ×t 𝐽)) = (sigaGen‘ran 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sxbrsiga.0 | . . 3 ⊢ 𝐽 = (topGen‘ran (,)) | |
2 | dya2ioc.1 | . . 3 ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) | |
3 | dya2ioc.2 | . . 3 ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) | |
4 | 1, 2, 3 | sxbrsigalem1 30475 | . 2 ⊢ (sigaGen‘(𝐽 ×t 𝐽)) ⊆ (sigaGen‘ran 𝑅) |
5 | 1, 2, 3 | sxbrsigalem2 30476 | . . . 4 ⊢ (sigaGen‘ran 𝑅) ⊆ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) |
6 | 1 | sxbrsigalem3 30462 | . . . 4 ⊢ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ⊆ (sigaGen‘(Clsd‘(𝐽 ×t 𝐽))) |
7 | 5, 6 | sstri 3645 | . . 3 ⊢ (sigaGen‘ran 𝑅) ⊆ (sigaGen‘(Clsd‘(𝐽 ×t 𝐽))) |
8 | 1 | tpr2tp 30078 | . . . . . 6 ⊢ (𝐽 ×t 𝐽) ∈ (TopOn‘(ℝ × ℝ)) |
9 | 8 | topontopi 20768 | . . . . 5 ⊢ (𝐽 ×t 𝐽) ∈ Top |
10 | eqid 2651 | . . . . 5 ⊢ ∪ (𝐽 ×t 𝐽) = ∪ (𝐽 ×t 𝐽) | |
11 | 9, 10 | unicls 30077 | . . . 4 ⊢ ∪ (Clsd‘(𝐽 ×t 𝐽)) = ∪ (𝐽 ×t 𝐽) |
12 | cldssbrsiga 30378 | . . . . 5 ⊢ ((𝐽 ×t 𝐽) ∈ Top → (Clsd‘(𝐽 ×t 𝐽)) ⊆ (sigaGen‘(𝐽 ×t 𝐽))) | |
13 | 9, 12 | ax-mp 5 | . . . 4 ⊢ (Clsd‘(𝐽 ×t 𝐽)) ⊆ (sigaGen‘(𝐽 ×t 𝐽)) |
14 | sigagenss2 30341 | . . . 4 ⊢ ((∪ (Clsd‘(𝐽 ×t 𝐽)) = ∪ (𝐽 ×t 𝐽) ∧ (Clsd‘(𝐽 ×t 𝐽)) ⊆ (sigaGen‘(𝐽 ×t 𝐽)) ∧ (𝐽 ×t 𝐽) ∈ Top) → (sigaGen‘(Clsd‘(𝐽 ×t 𝐽))) ⊆ (sigaGen‘(𝐽 ×t 𝐽))) | |
15 | 11, 13, 9, 14 | mp3an 1464 | . . 3 ⊢ (sigaGen‘(Clsd‘(𝐽 ×t 𝐽))) ⊆ (sigaGen‘(𝐽 ×t 𝐽)) |
16 | 7, 15 | sstri 3645 | . 2 ⊢ (sigaGen‘ran 𝑅) ⊆ (sigaGen‘(𝐽 ×t 𝐽)) |
17 | 4, 16 | eqssi 3652 | 1 ⊢ (sigaGen‘(𝐽 ×t 𝐽)) = (sigaGen‘ran 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 ∈ wcel 2030 ∪ cun 3605 ⊆ wss 3607 ∪ cuni 4468 ↦ cmpt 4762 × cxp 5141 ran crn 5144 ‘cfv 5926 (class class class)co 6690 ↦ cmpt2 6692 ℝcr 9973 1c1 9975 + caddc 9977 +∞cpnf 10109 / cdiv 10722 2c2 11108 ℤcz 11415 (,)cioo 12213 [,)cico 12215 ↑cexp 12900 topGenctg 16145 Topctop 20746 Clsdccld 20868 ×t ctx 21411 sigaGencsigagen 30329 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-ac2 9323 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 ax-addf 10053 ax-mulf 10054 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-iin 4555 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-of 6939 df-om 7108 df-1st 7210 df-2nd 7211 df-supp 7341 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-2o 7606 df-oadd 7609 df-omul 7610 df-er 7787 df-map 7901 df-pm 7902 df-ixp 7951 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-fsupp 8317 df-fi 8358 df-sup 8389 df-inf 8390 df-oi 8456 df-card 8803 df-acn 8806 df-ac 8977 df-cda 9028 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-dec 11532 df-uz 11726 df-q 11827 df-rp 11871 df-xneg 11984 df-xadd 11985 df-xmul 11986 df-ioo 12217 df-ioc 12218 df-ico 12219 df-icc 12220 df-fz 12365 df-fzo 12505 df-fl 12633 df-mod 12709 df-seq 12842 df-exp 12901 df-fac 13101 df-bc 13130 df-hash 13158 df-shft 13851 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-limsup 14246 df-clim 14263 df-rlim 14264 df-sum 14461 df-ef 14842 df-sin 14844 df-cos 14845 df-pi 14847 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-starv 16003 df-sca 16004 df-vsca 16005 df-ip 16006 df-tset 16007 df-ple 16008 df-ds 16011 df-unif 16012 df-hom 16013 df-cco 16014 df-rest 16130 df-topn 16131 df-0g 16149 df-gsum 16150 df-topgen 16151 df-pt 16152 df-prds 16155 df-xrs 16209 df-qtop 16214 df-imas 16215 df-xps 16217 df-mre 16293 df-mrc 16294 df-acs 16296 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-submnd 17383 df-mulg 17588 df-cntz 17796 df-cmn 18241 df-psmet 19786 df-xmet 19787 df-met 19788 df-bl 19789 df-mopn 19790 df-fbas 19791 df-fg 19792 df-cnfld 19795 df-refld 19999 df-top 20747 df-topon 20764 df-topsp 20785 df-bases 20798 df-cld 20871 df-ntr 20872 df-cls 20873 df-nei 20950 df-lp 20988 df-perf 20989 df-cn 21079 df-cnp 21080 df-haus 21167 df-cmp 21238 df-tx 21413 df-hmeo 21606 df-fil 21697 df-fm 21789 df-flim 21790 df-flf 21791 df-fcls 21792 df-xms 22172 df-ms 22173 df-tms 22174 df-cncf 22728 df-cfil 23099 df-cmet 23101 df-cms 23178 df-limc 23675 df-dv 23676 df-log 24348 df-cxp 24349 df-logb 24548 df-siga 30299 df-sigagen 30330 df-brsiga 30373 |
This theorem is referenced by: sxbrsigalem5 30478 |
Copyright terms: Public domain | W3C validator |