Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sxbrsigalem5 Structured version   Visualization version   GIF version

Theorem sxbrsigalem5 31548
Description: First direction for sxbrsiga 31550. (Contributed by Thierry Arnoux, 22-Sep-2017.) (Revised by Thierry Arnoux, 11-Oct-2017.)
Hypotheses
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
dya2ioc.1 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
dya2ioc.2 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
Assertion
Ref Expression
sxbrsigalem5 (sigaGen‘(𝐽 ×t 𝐽)) ⊆ (𝔅 ×s 𝔅)
Distinct variable groups:   𝑥,𝑛   𝑥,𝐼   𝑣,𝑢,𝐼,𝑥   𝑢,𝑛,𝑣   𝑅,𝑛,𝑥   𝑥,𝐽,𝑢,𝑣
Allowed substitution hints:   𝑅(𝑣,𝑢)   𝐼(𝑛)   𝐽(𝑛)

Proof of Theorem sxbrsigalem5
Dummy variables 𝑒 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sxbrsiga.0 . . . . 5 𝐽 = (topGen‘ran (,))
2 dya2ioc.1 . . . . 5 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
3 dya2ioc.2 . . . . 5 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
41, 2, 3dya2iocucvr 31544 . . . 4 ran 𝑅 = (ℝ × ℝ)
5 br2base 31529 . . . 4 ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) = (ℝ × ℝ)
64, 5eqtr4i 2849 . . 3 ran 𝑅 = ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓))
7 brsigarn 31445 . . . . . . 7 𝔅 ∈ (sigAlgebra‘ℝ)
87elexi 3515 . . . . . 6 𝔅 ∈ V
98, 8mpoex 7779 . . . . 5 (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) ∈ V
109rnex 7619 . . . 4 ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) ∈ V
111, 2dya2icobrsiga 31536 . . . . . . . . . 10 ran 𝐼 ⊆ 𝔅
1211sseli 3965 . . . . . . . . 9 (𝑢 ∈ ran 𝐼𝑢 ∈ 𝔅)
1311sseli 3965 . . . . . . . . 9 (𝑣 ∈ ran 𝐼𝑣 ∈ 𝔅)
1412, 13anim12i 614 . . . . . . . 8 ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) → (𝑢 ∈ 𝔅𝑣 ∈ 𝔅))
1514anim1i 616 . . . . . . 7 (((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) ∧ 𝑔 = (𝑢 × 𝑣)) → ((𝑢 ∈ 𝔅𝑣 ∈ 𝔅) ∧ 𝑔 = (𝑢 × 𝑣)))
1615ssoprab2i 7265 . . . . . 6 {⟨⟨𝑢, 𝑣⟩, 𝑔⟩ ∣ ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) ∧ 𝑔 = (𝑢 × 𝑣))} ⊆ {⟨⟨𝑢, 𝑣⟩, 𝑔⟩ ∣ ((𝑢 ∈ 𝔅𝑣 ∈ 𝔅) ∧ 𝑔 = (𝑢 × 𝑣))}
17 df-mpo 7163 . . . . . . 7 (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) = {⟨⟨𝑢, 𝑣⟩, 𝑔⟩ ∣ ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) ∧ 𝑔 = (𝑢 × 𝑣))}
183, 17eqtri 2846 . . . . . 6 𝑅 = {⟨⟨𝑢, 𝑣⟩, 𝑔⟩ ∣ ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) ∧ 𝑔 = (𝑢 × 𝑣))}
19 xpeq1 5571 . . . . . . . 8 (𝑒 = 𝑢 → (𝑒 × 𝑓) = (𝑢 × 𝑓))
20 xpeq2 5578 . . . . . . . 8 (𝑓 = 𝑣 → (𝑢 × 𝑓) = (𝑢 × 𝑣))
2119, 20cbvmpov 7251 . . . . . . 7 (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) = (𝑢 ∈ 𝔅, 𝑣 ∈ 𝔅 ↦ (𝑢 × 𝑣))
22 df-mpo 7163 . . . . . . 7 (𝑢 ∈ 𝔅, 𝑣 ∈ 𝔅 ↦ (𝑢 × 𝑣)) = {⟨⟨𝑢, 𝑣⟩, 𝑔⟩ ∣ ((𝑢 ∈ 𝔅𝑣 ∈ 𝔅) ∧ 𝑔 = (𝑢 × 𝑣))}
2321, 22eqtri 2846 . . . . . 6 (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) = {⟨⟨𝑢, 𝑣⟩, 𝑔⟩ ∣ ((𝑢 ∈ 𝔅𝑣 ∈ 𝔅) ∧ 𝑔 = (𝑢 × 𝑣))}
2416, 18, 233sstr4i 4012 . . . . 5 𝑅 ⊆ (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓))
25 rnss 5811 . . . . 5 (𝑅 ⊆ (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) → ran 𝑅 ⊆ ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)))
2624, 25ax-mp 5 . . . 4 ran 𝑅 ⊆ ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓))
27 sssigagen2 31407 . . . 4 ((ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) ∈ V ∧ ran 𝑅 ⊆ ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓))) → ran 𝑅 ⊆ (sigaGen‘ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓))))
2810, 26, 27mp2an 690 . . 3 ran 𝑅 ⊆ (sigaGen‘ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)))
29 sigagenss2 31411 . . 3 (( ran 𝑅 = ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) ∧ ran 𝑅 ⊆ (sigaGen‘ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓))) ∧ ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) ∈ V) → (sigaGen‘ran 𝑅) ⊆ (sigaGen‘ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓))))
306, 28, 10, 29mp3an 1457 . 2 (sigaGen‘ran 𝑅) ⊆ (sigaGen‘ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)))
311, 2, 3sxbrsigalem4 31547 . 2 (sigaGen‘(𝐽 ×t 𝐽)) = (sigaGen‘ran 𝑅)
32 eqid 2823 . . . 4 ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) = ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓))
3332sxval 31451 . . 3 ((𝔅 ∈ (sigAlgebra‘ℝ) ∧ 𝔅 ∈ (sigAlgebra‘ℝ)) → (𝔅 ×s 𝔅) = (sigaGen‘ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓))))
347, 7, 33mp2an 690 . 2 (𝔅 ×s 𝔅) = (sigaGen‘ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)))
3530, 31, 343sstr4i 4012 1 (sigaGen‘(𝐽 ×t 𝐽)) ⊆ (𝔅 ×s 𝔅)
Colors of variables: wff setvar class
Syntax hints:  wa 398   = wceq 1537  wcel 2114  Vcvv 3496  wss 3938   cuni 4840   × cxp 5555  ran crn 5558  cfv 6357  (class class class)co 7158  {coprab 7159  cmpo 7160  cr 10538  1c1 10540   + caddc 10542   / cdiv 11299  2c2 11695  cz 11984  (,)cioo 12741  [,)cico 12743  cexp 13432  topGenctg 16713   ×t ctx 22170  sigAlgebracsiga 31369  sigaGencsigagen 31399  𝔅cbrsiga 31442   ×s csx 31449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-ac2 9887  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-omul 8109  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-dju 9332  df-card 9370  df-acn 9373  df-ac 9544  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14428  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-limsup 14830  df-clim 14847  df-rlim 14848  df-sum 15045  df-ef 15423  df-sin 15425  df-cos 15426  df-pi 15428  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-refld 20751  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-haus 21925  df-cmp 21997  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-fcls 22551  df-xms 22932  df-ms 22933  df-tms 22934  df-cncf 23488  df-cfil 23860  df-cmet 23862  df-cms 23940  df-limc 24466  df-dv 24467  df-log 25142  df-cxp 25143  df-logb 25345  df-siga 31370  df-sigagen 31400  df-brsiga 31443  df-sx 31450
This theorem is referenced by:  sxbrsigalem6  31549
  Copyright terms: Public domain W3C validator