MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl223anc Structured version   Visualization version   GIF version

Theorem syl223anc 1433
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
syl12anc.1 (𝜑𝜓)
syl12anc.2 (𝜑𝜒)
syl12anc.3 (𝜑𝜃)
syl22anc.4 (𝜑𝜏)
syl23anc.5 (𝜑𝜂)
syl33anc.6 (𝜑𝜁)
syl133anc.7 (𝜑𝜎)
syl223anc.8 (((𝜓𝜒) ∧ (𝜃𝜏) ∧ (𝜂𝜁𝜎)) → 𝜌)
Assertion
Ref Expression
syl223anc (𝜑𝜌)

Proof of Theorem syl223anc
StepHypRef Expression
1 syl12anc.1 . 2 (𝜑𝜓)
2 syl12anc.2 . 2 (𝜑𝜒)
3 syl12anc.3 . . 3 (𝜑𝜃)
4 syl22anc.4 . . 3 (𝜑𝜏)
53, 4jca 555 . 2 (𝜑 → (𝜃𝜏))
6 syl23anc.5 . 2 (𝜑𝜂)
7 syl33anc.6 . 2 (𝜑𝜁)
8 syl133anc.7 . 2 (𝜑𝜎)
9 syl223anc.8 . 2 (((𝜓𝜒) ∧ (𝜃𝜏) ∧ (𝜂𝜁𝜎)) → 𝜌)
101, 2, 5, 6, 7, 8, 9syl213anc 1426 1 (𝜑𝜌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 385  df-3an 1074
This theorem is referenced by:  cdleme17d1  35964  cdlemednpq  35974  cdleme19d  35981  cdleme20aN  35984  cdleme20c  35986  cdleme20f  35989  cdleme20g  35990  cdleme20j  35993  cdleme20l1  35995  cdleme20l2  35996  cdlemky  36601  cdlemkyyN  36637
  Copyright terms: Public domain W3C validator