MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl312anc Structured version   Visualization version   GIF version

Theorem syl312anc 1344
Description: Syllogism combined with contraction. (Contributed by NM, 11-Jul-2012.)
Hypotheses
Ref Expression
syl12anc.1 (𝜑𝜓)
syl12anc.2 (𝜑𝜒)
syl12anc.3 (𝜑𝜃)
syl22anc.4 (𝜑𝜏)
syl23anc.5 (𝜑𝜂)
syl33anc.6 (𝜑𝜁)
syl312anc.7 (((𝜓𝜒𝜃) ∧ 𝜏 ∧ (𝜂𝜁)) → 𝜎)
Assertion
Ref Expression
syl312anc (𝜑𝜎)

Proof of Theorem syl312anc
StepHypRef Expression
1 syl12anc.1 . 2 (𝜑𝜓)
2 syl12anc.2 . 2 (𝜑𝜒)
3 syl12anc.3 . 2 (𝜑𝜃)
4 syl22anc.4 . 2 (𝜑𝜏)
5 syl23anc.5 . . 3 (𝜑𝜂)
6 syl33anc.6 . . 3 (𝜑𝜁)
75, 6jca 554 . 2 (𝜑 → (𝜂𝜁))
8 syl312anc.7 . 2 (((𝜓𝜒𝜃) ∧ 𝜏 ∧ (𝜂𝜁)) → 𝜎)
91, 2, 3, 4, 7, 8syl311anc 1337 1 (𝜑𝜎)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386  df-3an 1038
This theorem is referenced by:  pythagtriplem19  15462  cdleme27cl  35134  cdlemefs27cl  35181  cdleme32fvcl  35208  cdlemg16ALTN  35426  cdlemg27a  35460  cdlemg31c  35467  cdlemg39  35484  cdlemk11ta  35697  cdlemk19ylem  35698  cdlemk11tc  35713  cdlemk45  35715  dihmeetlem12N  36087  dihjatc  36186
  Copyright terms: Public domain W3C validator