MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl313anc Structured version   Visualization version   GIF version

Theorem syl313anc 1347
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
syl12anc.1 (𝜑𝜓)
syl12anc.2 (𝜑𝜒)
syl12anc.3 (𝜑𝜃)
syl22anc.4 (𝜑𝜏)
syl23anc.5 (𝜑𝜂)
syl33anc.6 (𝜑𝜁)
syl133anc.7 (𝜑𝜎)
syl313anc.8 (((𝜓𝜒𝜃) ∧ 𝜏 ∧ (𝜂𝜁𝜎)) → 𝜌)
Assertion
Ref Expression
syl313anc (𝜑𝜌)

Proof of Theorem syl313anc
StepHypRef Expression
1 syl12anc.1 . 2 (𝜑𝜓)
2 syl12anc.2 . 2 (𝜑𝜒)
3 syl12anc.3 . 2 (𝜑𝜃)
4 syl22anc.4 . 2 (𝜑𝜏)
5 syl23anc.5 . . 3 (𝜑𝜂)
6 syl33anc.6 . . 3 (𝜑𝜁)
7 syl133anc.7 . . 3 (𝜑𝜎)
85, 6, 73jca 1240 . 2 (𝜑 → (𝜂𝜁𝜎))
9 syl313anc.8 . 2 (((𝜓𝜒𝜃) ∧ 𝜏 ∧ (𝜂𝜁𝜎)) → 𝜌)
101, 2, 3, 4, 8, 9syl311anc 1337 1 (𝜑𝜌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386  df-3an 1038
This theorem is referenced by:  syl323anc  1353  osumcllem6N  34724  cdlemg13  35417  cdlemk7u  35635  cdlemk31  35661  cdlemk27-3  35672  cdlemk19ylem  35695  cdlemk46  35713
  Copyright terms: Public domain W3C validator