MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl321anc Structured version   Visualization version   GIF version

Theorem syl321anc 1345
Description: Syllogism combined with contraction. (Contributed by NM, 11-Jul-2012.)
Hypotheses
Ref Expression
syl12anc.1 (𝜑𝜓)
syl12anc.2 (𝜑𝜒)
syl12anc.3 (𝜑𝜃)
syl22anc.4 (𝜑𝜏)
syl23anc.5 (𝜑𝜂)
syl33anc.6 (𝜑𝜁)
syl321anc.7 (((𝜓𝜒𝜃) ∧ (𝜏𝜂) ∧ 𝜁) → 𝜎)
Assertion
Ref Expression
syl321anc (𝜑𝜎)

Proof of Theorem syl321anc
StepHypRef Expression
1 syl12anc.1 . 2 (𝜑𝜓)
2 syl12anc.2 . 2 (𝜑𝜒)
3 syl12anc.3 . 2 (𝜑𝜃)
4 syl22anc.4 . . 3 (𝜑𝜏)
5 syl23anc.5 . . 3 (𝜑𝜂)
64, 5jca 554 . 2 (𝜑 → (𝜏𝜂))
7 syl33anc.6 . 2 (𝜑𝜁)
8 syl321anc.7 . 2 (((𝜓𝜒𝜃) ∧ (𝜏𝜂) ∧ 𝜁) → 𝜎)
91, 2, 3, 6, 7, 8syl311anc 1337 1 (𝜑𝜎)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386  df-3an 1038
This theorem is referenced by:  syl322anc  1351  cxple2ad  24378  chordthmlem3  24468  4noncolr2  34241  4noncolr1  34242  3atlem5  34274  2lplnj  34407  llnmod2i2  34650  dalawlem11  34668  dalawlem12  34669  cdleme43dN  35281  cdleme4gfv  35296  cdlemeg46nlpq  35306  cdlemg17bq  35462  cdlemg31b0N  35483  cdlemg31b0a  35484  cdlemg31c  35488  cdlemg39  35505  cdlemk47  35738  lincext3  41549
  Copyright terms: Public domain W3C validator