![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl323anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl12anc.1 | ⊢ (𝜑 → 𝜓) |
syl12anc.2 | ⊢ (𝜑 → 𝜒) |
syl12anc.3 | ⊢ (𝜑 → 𝜃) |
syl22anc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl33anc.6 | ⊢ (𝜑 → 𝜁) |
syl133anc.7 | ⊢ (𝜑 → 𝜎) |
syl233anc.8 | ⊢ (𝜑 → 𝜌) |
syl323anc.9 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂) ∧ (𝜁 ∧ 𝜎 ∧ 𝜌)) → 𝜇) |
Ref | Expression |
---|---|
syl323anc | ⊢ (𝜑 → 𝜇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl12anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl12anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | syl12anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
4 | syl22anc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
6 | 4, 5 | jca 555 | . 2 ⊢ (𝜑 → (𝜏 ∧ 𝜂)) |
7 | syl33anc.6 | . 2 ⊢ (𝜑 → 𝜁) | |
8 | syl133anc.7 | . 2 ⊢ (𝜑 → 𝜎) | |
9 | syl233anc.8 | . 2 ⊢ (𝜑 → 𝜌) | |
10 | syl323anc.9 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂) ∧ (𝜁 ∧ 𝜎 ∧ 𝜌)) → 𝜇) | |
11 | 1, 2, 3, 6, 7, 8, 9, 10 | syl313anc 1501 | 1 ⊢ (𝜑 → 𝜇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1074 |
This theorem is referenced by: 4atlem11 35396 dalem52 35511 dath2 35524 dalawlem1 35658 dalaw 35673 cdlemb2 35828 4atexlem7 35862 cdleme7ga 36036 cdleme18a 36079 cdleme18c 36081 cdleme21f 36120 cdleme26f2ALTN 36152 cdleme26f2 36153 cdleme27a 36155 cdlemg17dN 36451 cdlemg18a 36466 cdlemg31d 36488 cdlemg48 36525 cdlemj1 36609 dihord4 37047 |
Copyright terms: Public domain | W3C validator |