MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl3anl3 Structured version   Visualization version   GIF version

Theorem syl3anl3 1416
Description: A syllogism inference. (Contributed by NM, 24-Feb-2005.)
Hypotheses
Ref Expression
syl3anl3.1 (𝜑𝜃)
syl3anl3.2 (((𝜓𝜒𝜃) ∧ 𝜏) → 𝜂)
Assertion
Ref Expression
syl3anl3 (((𝜓𝜒𝜑) ∧ 𝜏) → 𝜂)

Proof of Theorem syl3anl3
StepHypRef Expression
1 syl3anl3.1 . . 3 (𝜑𝜃)
213anim3i 1269 . 2 ((𝜓𝜒𝜑) → (𝜓𝜒𝜃))
3 syl3anl3.2 . 2 (((𝜓𝜒𝜃) ∧ 𝜏) → 𝜂)
42, 3sylan 487 1 (((𝜓𝜒𝜑) ∧ 𝜏) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 385  df-3an 1056
This theorem is referenced by:  lgsdirnn0  25114  rdgeqoa  33348  atcvreq0  34919  paddasslem16  35439
  Copyright terms: Public domain W3C validator