![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl7bi | Structured version Visualization version GIF version |
Description: A mixed syllogism inference from a doubly nested implication and a biconditional. (Contributed by NM, 14-May-1993.) |
Ref | Expression |
---|---|
syl7bi.1 | ⊢ (𝜑 ↔ 𝜓) |
syl7bi.2 | ⊢ (𝜒 → (𝜃 → (𝜓 → 𝜏))) |
Ref | Expression |
---|---|
syl7bi | ⊢ (𝜒 → (𝜃 → (𝜑 → 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl7bi.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | biimpi 206 | . 2 ⊢ (𝜑 → 𝜓) |
3 | syl7bi.2 | . 2 ⊢ (𝜒 → (𝜃 → (𝜓 → 𝜏))) | |
4 | 2, 3 | syl7 74 | 1 ⊢ (𝜒 → (𝜃 → (𝜑 → 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 |
This theorem is referenced by: 3jao 1537 nfimt 1970 rspct 3442 zfpair 5053 gruen 9826 axpre-sup 10182 nn0lt2 11632 fzofzim 12709 ndvdssub 15335 alexsubALT 22056 clwlkclwwlklem2a 27121 erclwwlktr 27145 erclwwlkntr 27202 dfon2lem8 32000 prtlem15 34664 prtlem18 34666 |
Copyright terms: Public domain | W3C validator |