MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl8ib Structured version   Visualization version   GIF version

Theorem syl8ib 246
Description: A syllogism rule of inference. The second premise is used to replace the consequent of the first premise. (Contributed by NM, 1-Aug-1994.)
Hypotheses
Ref Expression
syl8ib.1 (𝜑 → (𝜓 → (𝜒𝜃)))
syl8ib.2 (𝜃𝜏)
Assertion
Ref Expression
syl8ib (𝜑 → (𝜓 → (𝜒𝜏)))

Proof of Theorem syl8ib
StepHypRef Expression
1 syl8ib.1 . 2 (𝜑 → (𝜓 → (𝜒𝜃)))
2 syl8ib.2 . . 3 (𝜃𝜏)
32biimpi 206 . 2 (𝜃𝜏)
41, 3syl8 76 1 (𝜑 → (𝜓 → (𝜒𝜏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197
This theorem is referenced by:  en3lplem2  8550  axdc4lem  9315  bj-nexdh  32731
  Copyright terms: Public domain W3C validator