MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow1lem1 Structured version   Visualization version   GIF version

Theorem sylow1lem1 18726
Description: Lemma for sylow1 18731. The p-adic valuation of the size of 𝑆 is equal to the number of excess powers of 𝑃 in (♯‘𝑋) / (𝑃𝑁). (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
sylow1.x 𝑋 = (Base‘𝐺)
sylow1.g (𝜑𝐺 ∈ Grp)
sylow1.f (𝜑𝑋 ∈ Fin)
sylow1.p (𝜑𝑃 ∈ ℙ)
sylow1.n (𝜑𝑁 ∈ ℕ0)
sylow1.d (𝜑 → (𝑃𝑁) ∥ (♯‘𝑋))
sylow1lem.a + = (+g𝐺)
sylow1lem.s 𝑆 = {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)}
Assertion
Ref Expression
sylow1lem1 (𝜑 → ((♯‘𝑆) ∈ ℕ ∧ (𝑃 pCnt (♯‘𝑆)) = ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
Distinct variable groups:   𝑁,𝑠   𝑋,𝑠   + ,𝑠   𝐺,𝑠   𝑃,𝑠
Allowed substitution hints:   𝜑(𝑠)   𝑆(𝑠)

Proof of Theorem sylow1lem1
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow1.f . . . . 5 (𝜑𝑋 ∈ Fin)
2 sylow1.p . . . . . . . 8 (𝜑𝑃 ∈ ℙ)
3 prmnn 16021 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
42, 3syl 17 . . . . . . 7 (𝜑𝑃 ∈ ℕ)
5 sylow1.n . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
64, 5nnexpcld 13609 . . . . . 6 (𝜑 → (𝑃𝑁) ∈ ℕ)
76nnzd 12089 . . . . 5 (𝜑 → (𝑃𝑁) ∈ ℤ)
8 hashbc 13814 . . . . 5 ((𝑋 ∈ Fin ∧ (𝑃𝑁) ∈ ℤ) → ((♯‘𝑋)C(𝑃𝑁)) = (♯‘{𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)}))
91, 7, 8syl2anc 586 . . . 4 (𝜑 → ((♯‘𝑋)C(𝑃𝑁)) = (♯‘{𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)}))
10 sylow1lem.s . . . . 5 𝑆 = {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)}
1110fveq2i 6676 . . . 4 (♯‘𝑆) = (♯‘{𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)})
129, 11syl6eqr 2877 . . 3 (𝜑 → ((♯‘𝑋)C(𝑃𝑁)) = (♯‘𝑆))
13 sylow1.d . . . . . 6 (𝜑 → (𝑃𝑁) ∥ (♯‘𝑋))
14 sylow1.g . . . . . . . . . 10 (𝜑𝐺 ∈ Grp)
15 sylow1.x . . . . . . . . . . 11 𝑋 = (Base‘𝐺)
1615grpbn0 18135 . . . . . . . . . 10 (𝐺 ∈ Grp → 𝑋 ≠ ∅)
1714, 16syl 17 . . . . . . . . 9 (𝜑𝑋 ≠ ∅)
18 hasheq0 13727 . . . . . . . . . . 11 (𝑋 ∈ Fin → ((♯‘𝑋) = 0 ↔ 𝑋 = ∅))
191, 18syl 17 . . . . . . . . . 10 (𝜑 → ((♯‘𝑋) = 0 ↔ 𝑋 = ∅))
2019necon3bbid 3056 . . . . . . . . 9 (𝜑 → (¬ (♯‘𝑋) = 0 ↔ 𝑋 ≠ ∅))
2117, 20mpbird 259 . . . . . . . 8 (𝜑 → ¬ (♯‘𝑋) = 0)
22 hashcl 13720 . . . . . . . . . . 11 (𝑋 ∈ Fin → (♯‘𝑋) ∈ ℕ0)
231, 22syl 17 . . . . . . . . . 10 (𝜑 → (♯‘𝑋) ∈ ℕ0)
24 elnn0 11902 . . . . . . . . . 10 ((♯‘𝑋) ∈ ℕ0 ↔ ((♯‘𝑋) ∈ ℕ ∨ (♯‘𝑋) = 0))
2523, 24sylib 220 . . . . . . . . 9 (𝜑 → ((♯‘𝑋) ∈ ℕ ∨ (♯‘𝑋) = 0))
2625ord 860 . . . . . . . 8 (𝜑 → (¬ (♯‘𝑋) ∈ ℕ → (♯‘𝑋) = 0))
2721, 26mt3d 150 . . . . . . 7 (𝜑 → (♯‘𝑋) ∈ ℕ)
28 dvdsle 15663 . . . . . . 7 (((𝑃𝑁) ∈ ℤ ∧ (♯‘𝑋) ∈ ℕ) → ((𝑃𝑁) ∥ (♯‘𝑋) → (𝑃𝑁) ≤ (♯‘𝑋)))
297, 27, 28syl2anc 586 . . . . . 6 (𝜑 → ((𝑃𝑁) ∥ (♯‘𝑋) → (𝑃𝑁) ≤ (♯‘𝑋)))
3013, 29mpd 15 . . . . 5 (𝜑 → (𝑃𝑁) ≤ (♯‘𝑋))
316nnnn0d 11958 . . . . . . 7 (𝜑 → (𝑃𝑁) ∈ ℕ0)
32 nn0uz 12283 . . . . . . 7 0 = (ℤ‘0)
3331, 32eleqtrdi 2926 . . . . . 6 (𝜑 → (𝑃𝑁) ∈ (ℤ‘0))
3423nn0zd 12088 . . . . . 6 (𝜑 → (♯‘𝑋) ∈ ℤ)
35 elfz5 12903 . . . . . 6 (((𝑃𝑁) ∈ (ℤ‘0) ∧ (♯‘𝑋) ∈ ℤ) → ((𝑃𝑁) ∈ (0...(♯‘𝑋)) ↔ (𝑃𝑁) ≤ (♯‘𝑋)))
3633, 34, 35syl2anc 586 . . . . 5 (𝜑 → ((𝑃𝑁) ∈ (0...(♯‘𝑋)) ↔ (𝑃𝑁) ≤ (♯‘𝑋)))
3730, 36mpbird 259 . . . 4 (𝜑 → (𝑃𝑁) ∈ (0...(♯‘𝑋)))
38 bccl2 13686 . . . 4 ((𝑃𝑁) ∈ (0...(♯‘𝑋)) → ((♯‘𝑋)C(𝑃𝑁)) ∈ ℕ)
3937, 38syl 17 . . 3 (𝜑 → ((♯‘𝑋)C(𝑃𝑁)) ∈ ℕ)
4012, 39eqeltrrd 2917 . 2 (𝜑 → (♯‘𝑆) ∈ ℕ)
41 nnuz 12284 . . . . . . . . . . 11 ℕ = (ℤ‘1)
426, 41eleqtrdi 2926 . . . . . . . . . 10 (𝜑 → (𝑃𝑁) ∈ (ℤ‘1))
43 elfz5 12903 . . . . . . . . . 10 (((𝑃𝑁) ∈ (ℤ‘1) ∧ (♯‘𝑋) ∈ ℤ) → ((𝑃𝑁) ∈ (1...(♯‘𝑋)) ↔ (𝑃𝑁) ≤ (♯‘𝑋)))
4442, 34, 43syl2anc 586 . . . . . . . . 9 (𝜑 → ((𝑃𝑁) ∈ (1...(♯‘𝑋)) ↔ (𝑃𝑁) ≤ (♯‘𝑋)))
4530, 44mpbird 259 . . . . . . . 8 (𝜑 → (𝑃𝑁) ∈ (1...(♯‘𝑋)))
46 1zzd 12016 . . . . . . . . 9 (𝜑 → 1 ∈ ℤ)
47 fzsubel 12946 . . . . . . . . 9 (((1 ∈ ℤ ∧ (♯‘𝑋) ∈ ℤ) ∧ ((𝑃𝑁) ∈ ℤ ∧ 1 ∈ ℤ)) → ((𝑃𝑁) ∈ (1...(♯‘𝑋)) ↔ ((𝑃𝑁) − 1) ∈ ((1 − 1)...((♯‘𝑋) − 1))))
4846, 34, 7, 46, 47syl22anc 836 . . . . . . . 8 (𝜑 → ((𝑃𝑁) ∈ (1...(♯‘𝑋)) ↔ ((𝑃𝑁) − 1) ∈ ((1 − 1)...((♯‘𝑋) − 1))))
4945, 48mpbid 234 . . . . . . 7 (𝜑 → ((𝑃𝑁) − 1) ∈ ((1 − 1)...((♯‘𝑋) − 1)))
50 1m1e0 11712 . . . . . . . 8 (1 − 1) = 0
5150oveq1i 7169 . . . . . . 7 ((1 − 1)...((♯‘𝑋) − 1)) = (0...((♯‘𝑋) − 1))
5249, 51eleqtrdi 2926 . . . . . 6 (𝜑 → ((𝑃𝑁) − 1) ∈ (0...((♯‘𝑋) − 1)))
53 bcp1nk 13680 . . . . . 6 (((𝑃𝑁) − 1) ∈ (0...((♯‘𝑋) − 1)) → ((((♯‘𝑋) − 1) + 1)C(((𝑃𝑁) − 1) + 1)) = ((((♯‘𝑋) − 1)C((𝑃𝑁) − 1)) · ((((♯‘𝑋) − 1) + 1) / (((𝑃𝑁) − 1) + 1))))
5452, 53syl 17 . . . . 5 (𝜑 → ((((♯‘𝑋) − 1) + 1)C(((𝑃𝑁) − 1) + 1)) = ((((♯‘𝑋) − 1)C((𝑃𝑁) − 1)) · ((((♯‘𝑋) − 1) + 1) / (((𝑃𝑁) − 1) + 1))))
5523nn0cnd 11960 . . . . . . 7 (𝜑 → (♯‘𝑋) ∈ ℂ)
56 ax-1cn 10598 . . . . . . 7 1 ∈ ℂ
57 npcan 10898 . . . . . . 7 (((♯‘𝑋) ∈ ℂ ∧ 1 ∈ ℂ) → (((♯‘𝑋) − 1) + 1) = (♯‘𝑋))
5855, 56, 57sylancl 588 . . . . . 6 (𝜑 → (((♯‘𝑋) − 1) + 1) = (♯‘𝑋))
596nncnd 11657 . . . . . . 7 (𝜑 → (𝑃𝑁) ∈ ℂ)
60 npcan 10898 . . . . . . 7 (((𝑃𝑁) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑃𝑁) − 1) + 1) = (𝑃𝑁))
6159, 56, 60sylancl 588 . . . . . 6 (𝜑 → (((𝑃𝑁) − 1) + 1) = (𝑃𝑁))
6258, 61oveq12d 7177 . . . . 5 (𝜑 → ((((♯‘𝑋) − 1) + 1)C(((𝑃𝑁) − 1) + 1)) = ((♯‘𝑋)C(𝑃𝑁)))
6358, 61oveq12d 7177 . . . . . 6 (𝜑 → ((((♯‘𝑋) − 1) + 1) / (((𝑃𝑁) − 1) + 1)) = ((♯‘𝑋) / (𝑃𝑁)))
6463oveq2d 7175 . . . . 5 (𝜑 → ((((♯‘𝑋) − 1)C((𝑃𝑁) − 1)) · ((((♯‘𝑋) − 1) + 1) / (((𝑃𝑁) − 1) + 1))) = ((((♯‘𝑋) − 1)C((𝑃𝑁) − 1)) · ((♯‘𝑋) / (𝑃𝑁))))
6554, 62, 643eqtr3d 2867 . . . 4 (𝜑 → ((♯‘𝑋)C(𝑃𝑁)) = ((((♯‘𝑋) − 1)C((𝑃𝑁) − 1)) · ((♯‘𝑋) / (𝑃𝑁))))
6665oveq2d 7175 . . 3 (𝜑 → (𝑃 pCnt ((♯‘𝑋)C(𝑃𝑁))) = (𝑃 pCnt ((((♯‘𝑋) − 1)C((𝑃𝑁) − 1)) · ((♯‘𝑋) / (𝑃𝑁)))))
6712oveq2d 7175 . . 3 (𝜑 → (𝑃 pCnt ((♯‘𝑋)C(𝑃𝑁))) = (𝑃 pCnt (♯‘𝑆)))
68 bccl2 13686 . . . . . . 7 (((𝑃𝑁) − 1) ∈ (0...((♯‘𝑋) − 1)) → (((♯‘𝑋) − 1)C((𝑃𝑁) − 1)) ∈ ℕ)
6952, 68syl 17 . . . . . 6 (𝜑 → (((♯‘𝑋) − 1)C((𝑃𝑁) − 1)) ∈ ℕ)
7069nnzd 12089 . . . . 5 (𝜑 → (((♯‘𝑋) − 1)C((𝑃𝑁) − 1)) ∈ ℤ)
7169nnne0d 11690 . . . . 5 (𝜑 → (((♯‘𝑋) − 1)C((𝑃𝑁) − 1)) ≠ 0)
726nnne0d 11690 . . . . . . 7 (𝜑 → (𝑃𝑁) ≠ 0)
73 dvdsval2 15613 . . . . . . 7 (((𝑃𝑁) ∈ ℤ ∧ (𝑃𝑁) ≠ 0 ∧ (♯‘𝑋) ∈ ℤ) → ((𝑃𝑁) ∥ (♯‘𝑋) ↔ ((♯‘𝑋) / (𝑃𝑁)) ∈ ℤ))
747, 72, 34, 73syl3anc 1367 . . . . . 6 (𝜑 → ((𝑃𝑁) ∥ (♯‘𝑋) ↔ ((♯‘𝑋) / (𝑃𝑁)) ∈ ℤ))
7513, 74mpbid 234 . . . . 5 (𝜑 → ((♯‘𝑋) / (𝑃𝑁)) ∈ ℤ)
7627nnne0d 11690 . . . . . 6 (𝜑 → (♯‘𝑋) ≠ 0)
7755, 59, 76, 72divne0d 11435 . . . . 5 (𝜑 → ((♯‘𝑋) / (𝑃𝑁)) ≠ 0)
78 pcmul 16191 . . . . 5 ((𝑃 ∈ ℙ ∧ ((((♯‘𝑋) − 1)C((𝑃𝑁) − 1)) ∈ ℤ ∧ (((♯‘𝑋) − 1)C((𝑃𝑁) − 1)) ≠ 0) ∧ (((♯‘𝑋) / (𝑃𝑁)) ∈ ℤ ∧ ((♯‘𝑋) / (𝑃𝑁)) ≠ 0)) → (𝑃 pCnt ((((♯‘𝑋) − 1)C((𝑃𝑁) − 1)) · ((♯‘𝑋) / (𝑃𝑁)))) = ((𝑃 pCnt (((♯‘𝑋) − 1)C((𝑃𝑁) − 1))) + (𝑃 pCnt ((♯‘𝑋) / (𝑃𝑁)))))
792, 70, 71, 75, 77, 78syl122anc 1375 . . . 4 (𝜑 → (𝑃 pCnt ((((♯‘𝑋) − 1)C((𝑃𝑁) − 1)) · ((♯‘𝑋) / (𝑃𝑁)))) = ((𝑃 pCnt (((♯‘𝑋) − 1)C((𝑃𝑁) − 1))) + (𝑃 pCnt ((♯‘𝑋) / (𝑃𝑁)))))
80 1cnd 10639 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
8155, 59, 80npncand 11024 . . . . . . . 8 (𝜑 → (((♯‘𝑋) − (𝑃𝑁)) + ((𝑃𝑁) − 1)) = ((♯‘𝑋) − 1))
8281oveq1d 7174 . . . . . . 7 (𝜑 → ((((♯‘𝑋) − (𝑃𝑁)) + ((𝑃𝑁) − 1))C((𝑃𝑁) − 1)) = (((♯‘𝑋) − 1)C((𝑃𝑁) − 1)))
8382oveq2d 7175 . . . . . 6 (𝜑 → (𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + ((𝑃𝑁) − 1))C((𝑃𝑁) − 1))) = (𝑃 pCnt (((♯‘𝑋) − 1)C((𝑃𝑁) − 1))))
846nnred 11656 . . . . . . . 8 (𝜑 → (𝑃𝑁) ∈ ℝ)
8584ltm1d 11575 . . . . . . 7 (𝜑 → ((𝑃𝑁) − 1) < (𝑃𝑁))
86 nnm1nn0 11941 . . . . . . . . 9 ((𝑃𝑁) ∈ ℕ → ((𝑃𝑁) − 1) ∈ ℕ0)
876, 86syl 17 . . . . . . . 8 (𝜑 → ((𝑃𝑁) − 1) ∈ ℕ0)
88 breq1 5072 . . . . . . . . . . 11 (𝑥 = 0 → (𝑥 < (𝑃𝑁) ↔ 0 < (𝑃𝑁)))
89 bcxmaslem1 15192 . . . . . . . . . . . . 13 (𝑥 = 0 → ((((♯‘𝑋) − (𝑃𝑁)) + 𝑥)C𝑥) = ((((♯‘𝑋) − (𝑃𝑁)) + 0)C0))
9089oveq2d 7175 . . . . . . . . . . . 12 (𝑥 = 0 → (𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + 𝑥)C𝑥)) = (𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + 0)C0)))
9190eqeq1d 2826 . . . . . . . . . . 11 (𝑥 = 0 → ((𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + 𝑥)C𝑥)) = 0 ↔ (𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + 0)C0)) = 0))
9288, 91imbi12d 347 . . . . . . . . . 10 (𝑥 = 0 → ((𝑥 < (𝑃𝑁) → (𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + 𝑥)C𝑥)) = 0) ↔ (0 < (𝑃𝑁) → (𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + 0)C0)) = 0)))
9392imbi2d 343 . . . . . . . . 9 (𝑥 = 0 → ((𝜑 → (𝑥 < (𝑃𝑁) → (𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + 𝑥)C𝑥)) = 0)) ↔ (𝜑 → (0 < (𝑃𝑁) → (𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + 0)C0)) = 0))))
94 breq1 5072 . . . . . . . . . . 11 (𝑥 = 𝑛 → (𝑥 < (𝑃𝑁) ↔ 𝑛 < (𝑃𝑁)))
95 bcxmaslem1 15192 . . . . . . . . . . . . 13 (𝑥 = 𝑛 → ((((♯‘𝑋) − (𝑃𝑁)) + 𝑥)C𝑥) = ((((♯‘𝑋) − (𝑃𝑁)) + 𝑛)C𝑛))
9695oveq2d 7175 . . . . . . . . . . . 12 (𝑥 = 𝑛 → (𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + 𝑥)C𝑥)) = (𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + 𝑛)C𝑛)))
9796eqeq1d 2826 . . . . . . . . . . 11 (𝑥 = 𝑛 → ((𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + 𝑥)C𝑥)) = 0 ↔ (𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + 𝑛)C𝑛)) = 0))
9894, 97imbi12d 347 . . . . . . . . . 10 (𝑥 = 𝑛 → ((𝑥 < (𝑃𝑁) → (𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + 𝑥)C𝑥)) = 0) ↔ (𝑛 < (𝑃𝑁) → (𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + 𝑛)C𝑛)) = 0)))
9998imbi2d 343 . . . . . . . . 9 (𝑥 = 𝑛 → ((𝜑 → (𝑥 < (𝑃𝑁) → (𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + 𝑥)C𝑥)) = 0)) ↔ (𝜑 → (𝑛 < (𝑃𝑁) → (𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + 𝑛)C𝑛)) = 0))))
100 breq1 5072 . . . . . . . . . . 11 (𝑥 = (𝑛 + 1) → (𝑥 < (𝑃𝑁) ↔ (𝑛 + 1) < (𝑃𝑁)))
101 bcxmaslem1 15192 . . . . . . . . . . . . 13 (𝑥 = (𝑛 + 1) → ((((♯‘𝑋) − (𝑃𝑁)) + 𝑥)C𝑥) = ((((♯‘𝑋) − (𝑃𝑁)) + (𝑛 + 1))C(𝑛 + 1)))
102101oveq2d 7175 . . . . . . . . . . . 12 (𝑥 = (𝑛 + 1) → (𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + 𝑥)C𝑥)) = (𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + (𝑛 + 1))C(𝑛 + 1))))
103102eqeq1d 2826 . . . . . . . . . . 11 (𝑥 = (𝑛 + 1) → ((𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + 𝑥)C𝑥)) = 0 ↔ (𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + (𝑛 + 1))C(𝑛 + 1))) = 0))
104100, 103imbi12d 347 . . . . . . . . . 10 (𝑥 = (𝑛 + 1) → ((𝑥 < (𝑃𝑁) → (𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + 𝑥)C𝑥)) = 0) ↔ ((𝑛 + 1) < (𝑃𝑁) → (𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + (𝑛 + 1))C(𝑛 + 1))) = 0)))
105104imbi2d 343 . . . . . . . . 9 (𝑥 = (𝑛 + 1) → ((𝜑 → (𝑥 < (𝑃𝑁) → (𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + 𝑥)C𝑥)) = 0)) ↔ (𝜑 → ((𝑛 + 1) < (𝑃𝑁) → (𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + (𝑛 + 1))C(𝑛 + 1))) = 0))))
106 breq1 5072 . . . . . . . . . . 11 (𝑥 = ((𝑃𝑁) − 1) → (𝑥 < (𝑃𝑁) ↔ ((𝑃𝑁) − 1) < (𝑃𝑁)))
107 bcxmaslem1 15192 . . . . . . . . . . . . 13 (𝑥 = ((𝑃𝑁) − 1) → ((((♯‘𝑋) − (𝑃𝑁)) + 𝑥)C𝑥) = ((((♯‘𝑋) − (𝑃𝑁)) + ((𝑃𝑁) − 1))C((𝑃𝑁) − 1)))
108107oveq2d 7175 . . . . . . . . . . . 12 (𝑥 = ((𝑃𝑁) − 1) → (𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + 𝑥)C𝑥)) = (𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + ((𝑃𝑁) − 1))C((𝑃𝑁) − 1))))
109108eqeq1d 2826 . . . . . . . . . . 11 (𝑥 = ((𝑃𝑁) − 1) → ((𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + 𝑥)C𝑥)) = 0 ↔ (𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + ((𝑃𝑁) − 1))C((𝑃𝑁) − 1))) = 0))
110106, 109imbi12d 347 . . . . . . . . . 10 (𝑥 = ((𝑃𝑁) − 1) → ((𝑥 < (𝑃𝑁) → (𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + 𝑥)C𝑥)) = 0) ↔ (((𝑃𝑁) − 1) < (𝑃𝑁) → (𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + ((𝑃𝑁) − 1))C((𝑃𝑁) − 1))) = 0)))
111110imbi2d 343 . . . . . . . . 9 (𝑥 = ((𝑃𝑁) − 1) → ((𝜑 → (𝑥 < (𝑃𝑁) → (𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + 𝑥)C𝑥)) = 0)) ↔ (𝜑 → (((𝑃𝑁) − 1) < (𝑃𝑁) → (𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + ((𝑃𝑁) − 1))C((𝑃𝑁) − 1))) = 0))))
112 znn0sub 12032 . . . . . . . . . . . . . . . 16 (((𝑃𝑁) ∈ ℤ ∧ (♯‘𝑋) ∈ ℤ) → ((𝑃𝑁) ≤ (♯‘𝑋) ↔ ((♯‘𝑋) − (𝑃𝑁)) ∈ ℕ0))
1137, 34, 112syl2anc 586 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑃𝑁) ≤ (♯‘𝑋) ↔ ((♯‘𝑋) − (𝑃𝑁)) ∈ ℕ0))
11430, 113mpbid 234 . . . . . . . . . . . . . 14 (𝜑 → ((♯‘𝑋) − (𝑃𝑁)) ∈ ℕ0)
115 0nn0 11915 . . . . . . . . . . . . . 14 0 ∈ ℕ0
116 nn0addcl 11935 . . . . . . . . . . . . . 14 ((((♯‘𝑋) − (𝑃𝑁)) ∈ ℕ0 ∧ 0 ∈ ℕ0) → (((♯‘𝑋) − (𝑃𝑁)) + 0) ∈ ℕ0)
117114, 115, 116sylancl 588 . . . . . . . . . . . . 13 (𝜑 → (((♯‘𝑋) − (𝑃𝑁)) + 0) ∈ ℕ0)
118 bcn0 13673 . . . . . . . . . . . . 13 ((((♯‘𝑋) − (𝑃𝑁)) + 0) ∈ ℕ0 → ((((♯‘𝑋) − (𝑃𝑁)) + 0)C0) = 1)
119117, 118syl 17 . . . . . . . . . . . 12 (𝜑 → ((((♯‘𝑋) − (𝑃𝑁)) + 0)C0) = 1)
120119oveq2d 7175 . . . . . . . . . . 11 (𝜑 → (𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + 0)C0)) = (𝑃 pCnt 1))
121 pc1 16195 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → (𝑃 pCnt 1) = 0)
1222, 121syl 17 . . . . . . . . . . 11 (𝜑 → (𝑃 pCnt 1) = 0)
123120, 122eqtrd 2859 . . . . . . . . . 10 (𝜑 → (𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + 0)C0)) = 0)
124123a1d 25 . . . . . . . . 9 (𝜑 → (0 < (𝑃𝑁) → (𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + 0)C0)) = 0))
125 nn0re 11909 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
126125ad2antrl 726 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → 𝑛 ∈ ℝ)
127 nn0p1nn 11939 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ)
128127ad2antrl 726 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → (𝑛 + 1) ∈ ℕ)
129128nnred 11656 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → (𝑛 + 1) ∈ ℝ)
1306adantr 483 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → (𝑃𝑁) ∈ ℕ)
131130nnred 11656 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → (𝑃𝑁) ∈ ℝ)
132126ltp1d 11573 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → 𝑛 < (𝑛 + 1))
133 simprr 771 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → (𝑛 + 1) < (𝑃𝑁))
134126, 129, 131, 132, 133lttrd 10804 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → 𝑛 < (𝑃𝑁))
135134expr 459 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 + 1) < (𝑃𝑁) → 𝑛 < (𝑃𝑁)))
136135imim1d 82 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 < (𝑃𝑁) → (𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + 𝑛)C𝑛)) = 0) → ((𝑛 + 1) < (𝑃𝑁) → (𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + 𝑛)C𝑛)) = 0)))
137 oveq1 7166 . . . . . . . . . . 11 ((𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + 𝑛)C𝑛)) = 0 → ((𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + 𝑛)C𝑛)) + (𝑃 pCnt (((((♯‘𝑋) − (𝑃𝑁)) + 𝑛) + 1) / (𝑛 + 1)))) = (0 + (𝑃 pCnt (((((♯‘𝑋) − (𝑃𝑁)) + 𝑛) + 1) / (𝑛 + 1)))))
138114adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → ((♯‘𝑋) − (𝑃𝑁)) ∈ ℕ0)
139138nn0cnd 11960 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → ((♯‘𝑋) − (𝑃𝑁)) ∈ ℂ)
140 nn0cn 11910 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
141140ad2antrl 726 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → 𝑛 ∈ ℂ)
142 1cnd 10639 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → 1 ∈ ℂ)
143139, 141, 142addassd 10666 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → ((((♯‘𝑋) − (𝑃𝑁)) + 𝑛) + 1) = (((♯‘𝑋) − (𝑃𝑁)) + (𝑛 + 1)))
144143oveq1d 7174 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → (((((♯‘𝑋) − (𝑃𝑁)) + 𝑛) + 1)C(𝑛 + 1)) = ((((♯‘𝑋) − (𝑃𝑁)) + (𝑛 + 1))C(𝑛 + 1)))
145 nn0addge2 11947 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℝ ∧ ((♯‘𝑋) − (𝑃𝑁)) ∈ ℕ0) → 𝑛 ≤ (((♯‘𝑋) − (𝑃𝑁)) + 𝑛))
146126, 138, 145syl2anc 586 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → 𝑛 ≤ (((♯‘𝑋) − (𝑃𝑁)) + 𝑛))
147 simprl 769 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → 𝑛 ∈ ℕ0)
148147, 32eleqtrdi 2926 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → 𝑛 ∈ (ℤ‘0))
149138, 147nn0addcld 11962 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → (((♯‘𝑋) − (𝑃𝑁)) + 𝑛) ∈ ℕ0)
150149nn0zd 12088 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → (((♯‘𝑋) − (𝑃𝑁)) + 𝑛) ∈ ℤ)
151 elfz5 12903 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ (ℤ‘0) ∧ (((♯‘𝑋) − (𝑃𝑁)) + 𝑛) ∈ ℤ) → (𝑛 ∈ (0...(((♯‘𝑋) − (𝑃𝑁)) + 𝑛)) ↔ 𝑛 ≤ (((♯‘𝑋) − (𝑃𝑁)) + 𝑛)))
152148, 150, 151syl2anc 586 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → (𝑛 ∈ (0...(((♯‘𝑋) − (𝑃𝑁)) + 𝑛)) ↔ 𝑛 ≤ (((♯‘𝑋) − (𝑃𝑁)) + 𝑛)))
153146, 152mpbird 259 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → 𝑛 ∈ (0...(((♯‘𝑋) − (𝑃𝑁)) + 𝑛)))
154 bcp1nk 13680 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (0...(((♯‘𝑋) − (𝑃𝑁)) + 𝑛)) → (((((♯‘𝑋) − (𝑃𝑁)) + 𝑛) + 1)C(𝑛 + 1)) = (((((♯‘𝑋) − (𝑃𝑁)) + 𝑛)C𝑛) · (((((♯‘𝑋) − (𝑃𝑁)) + 𝑛) + 1) / (𝑛 + 1))))
155153, 154syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → (((((♯‘𝑋) − (𝑃𝑁)) + 𝑛) + 1)C(𝑛 + 1)) = (((((♯‘𝑋) − (𝑃𝑁)) + 𝑛)C𝑛) · (((((♯‘𝑋) − (𝑃𝑁)) + 𝑛) + 1) / (𝑛 + 1))))
156144, 155eqtr3d 2861 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → ((((♯‘𝑋) − (𝑃𝑁)) + (𝑛 + 1))C(𝑛 + 1)) = (((((♯‘𝑋) − (𝑃𝑁)) + 𝑛)C𝑛) · (((((♯‘𝑋) − (𝑃𝑁)) + 𝑛) + 1) / (𝑛 + 1))))
157156oveq2d 7175 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → (𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + (𝑛 + 1))C(𝑛 + 1))) = (𝑃 pCnt (((((♯‘𝑋) − (𝑃𝑁)) + 𝑛)C𝑛) · (((((♯‘𝑋) − (𝑃𝑁)) + 𝑛) + 1) / (𝑛 + 1)))))
1582adantr 483 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → 𝑃 ∈ ℙ)
159 bccl2 13686 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (0...(((♯‘𝑋) − (𝑃𝑁)) + 𝑛)) → ((((♯‘𝑋) − (𝑃𝑁)) + 𝑛)C𝑛) ∈ ℕ)
160153, 159syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → ((((♯‘𝑋) − (𝑃𝑁)) + 𝑛)C𝑛) ∈ ℕ)
161 nnq 12364 . . . . . . . . . . . . . . 15 (((((♯‘𝑋) − (𝑃𝑁)) + 𝑛)C𝑛) ∈ ℕ → ((((♯‘𝑋) − (𝑃𝑁)) + 𝑛)C𝑛) ∈ ℚ)
162160, 161syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → ((((♯‘𝑋) − (𝑃𝑁)) + 𝑛)C𝑛) ∈ ℚ)
163160nnne0d 11690 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → ((((♯‘𝑋) − (𝑃𝑁)) + 𝑛)C𝑛) ≠ 0)
164150peano2zd 12093 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → ((((♯‘𝑋) − (𝑃𝑁)) + 𝑛) + 1) ∈ ℤ)
165 znq 12355 . . . . . . . . . . . . . . 15 ((((((♯‘𝑋) − (𝑃𝑁)) + 𝑛) + 1) ∈ ℤ ∧ (𝑛 + 1) ∈ ℕ) → (((((♯‘𝑋) − (𝑃𝑁)) + 𝑛) + 1) / (𝑛 + 1)) ∈ ℚ)
166164, 128, 165syl2anc 586 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → (((((♯‘𝑋) − (𝑃𝑁)) + 𝑛) + 1) / (𝑛 + 1)) ∈ ℚ)
167 nn0p1nn 11939 . . . . . . . . . . . . . . . . 17 ((((♯‘𝑋) − (𝑃𝑁)) + 𝑛) ∈ ℕ0 → ((((♯‘𝑋) − (𝑃𝑁)) + 𝑛) + 1) ∈ ℕ)
168149, 167syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → ((((♯‘𝑋) − (𝑃𝑁)) + 𝑛) + 1) ∈ ℕ)
169 nnrp 12403 . . . . . . . . . . . . . . . . 17 (((((♯‘𝑋) − (𝑃𝑁)) + 𝑛) + 1) ∈ ℕ → ((((♯‘𝑋) − (𝑃𝑁)) + 𝑛) + 1) ∈ ℝ+)
170 nnrp 12403 . . . . . . . . . . . . . . . . 17 ((𝑛 + 1) ∈ ℕ → (𝑛 + 1) ∈ ℝ+)
171 rpdivcl 12417 . . . . . . . . . . . . . . . . 17 ((((((♯‘𝑋) − (𝑃𝑁)) + 𝑛) + 1) ∈ ℝ+ ∧ (𝑛 + 1) ∈ ℝ+) → (((((♯‘𝑋) − (𝑃𝑁)) + 𝑛) + 1) / (𝑛 + 1)) ∈ ℝ+)
172169, 170, 171syl2an 597 . . . . . . . . . . . . . . . 16 ((((((♯‘𝑋) − (𝑃𝑁)) + 𝑛) + 1) ∈ ℕ ∧ (𝑛 + 1) ∈ ℕ) → (((((♯‘𝑋) − (𝑃𝑁)) + 𝑛) + 1) / (𝑛 + 1)) ∈ ℝ+)
173168, 128, 172syl2anc 586 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → (((((♯‘𝑋) − (𝑃𝑁)) + 𝑛) + 1) / (𝑛 + 1)) ∈ ℝ+)
174173rpne0d 12439 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → (((((♯‘𝑋) − (𝑃𝑁)) + 𝑛) + 1) / (𝑛 + 1)) ≠ 0)
175 pcqmul 16193 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ (((((♯‘𝑋) − (𝑃𝑁)) + 𝑛)C𝑛) ∈ ℚ ∧ ((((♯‘𝑋) − (𝑃𝑁)) + 𝑛)C𝑛) ≠ 0) ∧ ((((((♯‘𝑋) − (𝑃𝑁)) + 𝑛) + 1) / (𝑛 + 1)) ∈ ℚ ∧ (((((♯‘𝑋) − (𝑃𝑁)) + 𝑛) + 1) / (𝑛 + 1)) ≠ 0)) → (𝑃 pCnt (((((♯‘𝑋) − (𝑃𝑁)) + 𝑛)C𝑛) · (((((♯‘𝑋) − (𝑃𝑁)) + 𝑛) + 1) / (𝑛 + 1)))) = ((𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + 𝑛)C𝑛)) + (𝑃 pCnt (((((♯‘𝑋) − (𝑃𝑁)) + 𝑛) + 1) / (𝑛 + 1)))))
176158, 162, 163, 166, 174, 175syl122anc 1375 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → (𝑃 pCnt (((((♯‘𝑋) − (𝑃𝑁)) + 𝑛)C𝑛) · (((((♯‘𝑋) − (𝑃𝑁)) + 𝑛) + 1) / (𝑛 + 1)))) = ((𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + 𝑛)C𝑛)) + (𝑃 pCnt (((((♯‘𝑋) − (𝑃𝑁)) + 𝑛) + 1) / (𝑛 + 1)))))
177157, 176eqtrd 2859 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → (𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + (𝑛 + 1))C(𝑛 + 1))) = ((𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + 𝑛)C𝑛)) + (𝑃 pCnt (((((♯‘𝑋) − (𝑃𝑁)) + 𝑛) + 1) / (𝑛 + 1)))))
178168nnne0d 11690 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → ((((♯‘𝑋) − (𝑃𝑁)) + 𝑛) + 1) ≠ 0)
179 pcdiv 16192 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ (((((♯‘𝑋) − (𝑃𝑁)) + 𝑛) + 1) ∈ ℤ ∧ ((((♯‘𝑋) − (𝑃𝑁)) + 𝑛) + 1) ≠ 0) ∧ (𝑛 + 1) ∈ ℕ) → (𝑃 pCnt (((((♯‘𝑋) − (𝑃𝑁)) + 𝑛) + 1) / (𝑛 + 1))) = ((𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + 𝑛) + 1)) − (𝑃 pCnt (𝑛 + 1))))
180158, 164, 178, 128, 179syl121anc 1371 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → (𝑃 pCnt (((((♯‘𝑋) − (𝑃𝑁)) + 𝑛) + 1) / (𝑛 + 1))) = ((𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + 𝑛) + 1)) − (𝑃 pCnt (𝑛 + 1))))
181128nncnd 11657 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → (𝑛 + 1) ∈ ℂ)
182139, 181, 143comraddd 10857 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → ((((♯‘𝑋) − (𝑃𝑁)) + 𝑛) + 1) = ((𝑛 + 1) + ((♯‘𝑋) − (𝑃𝑁))))
183182oveq2d 7175 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → (𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + 𝑛) + 1)) = (𝑃 pCnt ((𝑛 + 1) + ((♯‘𝑋) − (𝑃𝑁)))))
184 simpr 487 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) ∧ ((♯‘𝑋) − (𝑃𝑁)) = 0) → ((♯‘𝑋) − (𝑃𝑁)) = 0)
185184oveq2d 7175 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) ∧ ((♯‘𝑋) − (𝑃𝑁)) = 0) → ((𝑛 + 1) + ((♯‘𝑋) − (𝑃𝑁))) = ((𝑛 + 1) + 0))
186181addid1d 10843 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → ((𝑛 + 1) + 0) = (𝑛 + 1))
187186adantr 483 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) ∧ ((♯‘𝑋) − (𝑃𝑁)) = 0) → ((𝑛 + 1) + 0) = (𝑛 + 1))
188185, 187eqtr2d 2860 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) ∧ ((♯‘𝑋) − (𝑃𝑁)) = 0) → (𝑛 + 1) = ((𝑛 + 1) + ((♯‘𝑋) − (𝑃𝑁))))
189188oveq2d 7175 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) ∧ ((♯‘𝑋) − (𝑃𝑁)) = 0) → (𝑃 pCnt (𝑛 + 1)) = (𝑃 pCnt ((𝑛 + 1) + ((♯‘𝑋) − (𝑃𝑁)))))
1902ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) ∧ ((♯‘𝑋) − (𝑃𝑁)) ≠ 0) → 𝑃 ∈ ℙ)
191 nnq 12364 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 + 1) ∈ ℕ → (𝑛 + 1) ∈ ℚ)
192128, 191syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → (𝑛 + 1) ∈ ℚ)
193192adantr 483 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) ∧ ((♯‘𝑋) − (𝑃𝑁)) ≠ 0) → (𝑛 + 1) ∈ ℚ)
194138nn0zd 12088 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → ((♯‘𝑋) − (𝑃𝑁)) ∈ ℤ)
195 zq 12357 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝑋) − (𝑃𝑁)) ∈ ℤ → ((♯‘𝑋) − (𝑃𝑁)) ∈ ℚ)
196194, 195syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → ((♯‘𝑋) − (𝑃𝑁)) ∈ ℚ)
197196adantr 483 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) ∧ ((♯‘𝑋) − (𝑃𝑁)) ≠ 0) → ((♯‘𝑋) − (𝑃𝑁)) ∈ ℚ)
198158, 128pccld 16190 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → (𝑃 pCnt (𝑛 + 1)) ∈ ℕ0)
199198nn0red 11959 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → (𝑃 pCnt (𝑛 + 1)) ∈ ℝ)
200199adantr 483 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) ∧ ((♯‘𝑋) − (𝑃𝑁)) ≠ 0) → (𝑃 pCnt (𝑛 + 1)) ∈ ℝ)
2015adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → 𝑁 ∈ ℕ0)
202201nn0red 11959 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → 𝑁 ∈ ℝ)
203202adantr 483 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) ∧ ((♯‘𝑋) − (𝑃𝑁)) ≠ 0) → 𝑁 ∈ ℝ)
204 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) ∧ ((♯‘𝑋) − (𝑃𝑁)) ≠ 0) → ((♯‘𝑋) − (𝑃𝑁)) ≠ 0)
205204neneqd 3024 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) ∧ ((♯‘𝑋) − (𝑃𝑁)) ≠ 0) → ¬ ((♯‘𝑋) − (𝑃𝑁)) = 0)
206114ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) ∧ ((♯‘𝑋) − (𝑃𝑁)) ≠ 0) → ((♯‘𝑋) − (𝑃𝑁)) ∈ ℕ0)
207 elnn0 11902 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((♯‘𝑋) − (𝑃𝑁)) ∈ ℕ0 ↔ (((♯‘𝑋) − (𝑃𝑁)) ∈ ℕ ∨ ((♯‘𝑋) − (𝑃𝑁)) = 0))
208206, 207sylib 220 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) ∧ ((♯‘𝑋) − (𝑃𝑁)) ≠ 0) → (((♯‘𝑋) − (𝑃𝑁)) ∈ ℕ ∨ ((♯‘𝑋) − (𝑃𝑁)) = 0))
209208ord 860 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) ∧ ((♯‘𝑋) − (𝑃𝑁)) ≠ 0) → (¬ ((♯‘𝑋) − (𝑃𝑁)) ∈ ℕ → ((♯‘𝑋) − (𝑃𝑁)) = 0))
210205, 209mt3d 150 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) ∧ ((♯‘𝑋) − (𝑃𝑁)) ≠ 0) → ((♯‘𝑋) − (𝑃𝑁)) ∈ ℕ)
211190, 210pccld 16190 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) ∧ ((♯‘𝑋) − (𝑃𝑁)) ≠ 0) → (𝑃 pCnt ((♯‘𝑋) − (𝑃𝑁))) ∈ ℕ0)
212211nn0red 11959 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) ∧ ((♯‘𝑋) − (𝑃𝑁)) ≠ 0) → (𝑃 pCnt ((♯‘𝑋) − (𝑃𝑁))) ∈ ℝ)
213128nnzd 12089 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → (𝑛 + 1) ∈ ℤ)
214 pcdvdsb 16208 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑃 ∈ ℙ ∧ (𝑛 + 1) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑁 ≤ (𝑃 pCnt (𝑛 + 1)) ↔ (𝑃𝑁) ∥ (𝑛 + 1)))
215158, 213, 201, 214syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → (𝑁 ≤ (𝑃 pCnt (𝑛 + 1)) ↔ (𝑃𝑁) ∥ (𝑛 + 1)))
2167adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → (𝑃𝑁) ∈ ℤ)
217 dvdsle 15663 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑃𝑁) ∈ ℤ ∧ (𝑛 + 1) ∈ ℕ) → ((𝑃𝑁) ∥ (𝑛 + 1) → (𝑃𝑁) ≤ (𝑛 + 1)))
218216, 128, 217syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → ((𝑃𝑁) ∥ (𝑛 + 1) → (𝑃𝑁) ≤ (𝑛 + 1)))
219215, 218sylbid 242 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → (𝑁 ≤ (𝑃 pCnt (𝑛 + 1)) → (𝑃𝑁) ≤ (𝑛 + 1)))
220202, 199lenltd 10789 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → (𝑁 ≤ (𝑃 pCnt (𝑛 + 1)) ↔ ¬ (𝑃 pCnt (𝑛 + 1)) < 𝑁))
221131, 129lenltd 10789 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → ((𝑃𝑁) ≤ (𝑛 + 1) ↔ ¬ (𝑛 + 1) < (𝑃𝑁)))
222219, 220, 2213imtr3d 295 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → (¬ (𝑃 pCnt (𝑛 + 1)) < 𝑁 → ¬ (𝑛 + 1) < (𝑃𝑁)))
223133, 222mt4d 117 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → (𝑃 pCnt (𝑛 + 1)) < 𝑁)
224223adantr 483 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) ∧ ((♯‘𝑋) − (𝑃𝑁)) ≠ 0) → (𝑃 pCnt (𝑛 + 1)) < 𝑁)
225 dvdssubr 15658 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑃𝑁) ∈ ℤ ∧ (♯‘𝑋) ∈ ℤ) → ((𝑃𝑁) ∥ (♯‘𝑋) ↔ (𝑃𝑁) ∥ ((♯‘𝑋) − (𝑃𝑁))))
2267, 34, 225syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((𝑃𝑁) ∥ (♯‘𝑋) ↔ (𝑃𝑁) ∥ ((♯‘𝑋) − (𝑃𝑁))))
22713, 226mpbid 234 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑃𝑁) ∥ ((♯‘𝑋) − (𝑃𝑁)))
228227ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) ∧ ((♯‘𝑋) − (𝑃𝑁)) ≠ 0) → (𝑃𝑁) ∥ ((♯‘𝑋) − (𝑃𝑁)))
229206nn0zd 12088 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) ∧ ((♯‘𝑋) − (𝑃𝑁)) ≠ 0) → ((♯‘𝑋) − (𝑃𝑁)) ∈ ℤ)
2305ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) ∧ ((♯‘𝑋) − (𝑃𝑁)) ≠ 0) → 𝑁 ∈ ℕ0)
231 pcdvdsb 16208 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃 ∈ ℙ ∧ ((♯‘𝑋) − (𝑃𝑁)) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑁 ≤ (𝑃 pCnt ((♯‘𝑋) − (𝑃𝑁))) ↔ (𝑃𝑁) ∥ ((♯‘𝑋) − (𝑃𝑁))))
232190, 229, 230, 231syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) ∧ ((♯‘𝑋) − (𝑃𝑁)) ≠ 0) → (𝑁 ≤ (𝑃 pCnt ((♯‘𝑋) − (𝑃𝑁))) ↔ (𝑃𝑁) ∥ ((♯‘𝑋) − (𝑃𝑁))))
233228, 232mpbird 259 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) ∧ ((♯‘𝑋) − (𝑃𝑁)) ≠ 0) → 𝑁 ≤ (𝑃 pCnt ((♯‘𝑋) − (𝑃𝑁))))
234200, 203, 212, 224, 233ltletrd 10803 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) ∧ ((♯‘𝑋) − (𝑃𝑁)) ≠ 0) → (𝑃 pCnt (𝑛 + 1)) < (𝑃 pCnt ((♯‘𝑋) − (𝑃𝑁))))
235190, 193, 197, 234pcadd2 16229 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) ∧ ((♯‘𝑋) − (𝑃𝑁)) ≠ 0) → (𝑃 pCnt (𝑛 + 1)) = (𝑃 pCnt ((𝑛 + 1) + ((♯‘𝑋) − (𝑃𝑁)))))
236189, 235pm2.61dane 3107 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → (𝑃 pCnt (𝑛 + 1)) = (𝑃 pCnt ((𝑛 + 1) + ((♯‘𝑋) − (𝑃𝑁)))))
237183, 236eqtr4d 2862 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → (𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + 𝑛) + 1)) = (𝑃 pCnt (𝑛 + 1)))
238198nn0cnd 11960 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → (𝑃 pCnt (𝑛 + 1)) ∈ ℂ)
239237, 238eqeltrd 2916 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → (𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + 𝑛) + 1)) ∈ ℂ)
240239, 237subeq0bd 11069 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → ((𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + 𝑛) + 1)) − (𝑃 pCnt (𝑛 + 1))) = 0)
241180, 240eqtrd 2859 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → (𝑃 pCnt (((((♯‘𝑋) − (𝑃𝑁)) + 𝑛) + 1) / (𝑛 + 1))) = 0)
242241oveq2d 7175 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → (0 + (𝑃 pCnt (((((♯‘𝑋) − (𝑃𝑁)) + 𝑛) + 1) / (𝑛 + 1)))) = (0 + 0))
243 00id 10818 . . . . . . . . . . . . 13 (0 + 0) = 0
244242, 243syl6req 2876 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → 0 = (0 + (𝑃 pCnt (((((♯‘𝑋) − (𝑃𝑁)) + 𝑛) + 1) / (𝑛 + 1)))))
245177, 244eqeq12d 2840 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → ((𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + (𝑛 + 1))C(𝑛 + 1))) = 0 ↔ ((𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + 𝑛)C𝑛)) + (𝑃 pCnt (((((♯‘𝑋) − (𝑃𝑁)) + 𝑛) + 1) / (𝑛 + 1)))) = (0 + (𝑃 pCnt (((((♯‘𝑋) − (𝑃𝑁)) + 𝑛) + 1) / (𝑛 + 1))))))
246137, 245syl5ibr 248 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) < (𝑃𝑁))) → ((𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + 𝑛)C𝑛)) = 0 → (𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + (𝑛 + 1))C(𝑛 + 1))) = 0))
247136, 246animpimp2impd 842 . . . . . . . . 9 (𝑛 ∈ ℕ0 → ((𝜑 → (𝑛 < (𝑃𝑁) → (𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + 𝑛)C𝑛)) = 0)) → (𝜑 → ((𝑛 + 1) < (𝑃𝑁) → (𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + (𝑛 + 1))C(𝑛 + 1))) = 0))))
24893, 99, 105, 111, 124, 247nn0ind 12080 . . . . . . . 8 (((𝑃𝑁) − 1) ∈ ℕ0 → (𝜑 → (((𝑃𝑁) − 1) < (𝑃𝑁) → (𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + ((𝑃𝑁) − 1))C((𝑃𝑁) − 1))) = 0)))
24987, 248mpcom 38 . . . . . . 7 (𝜑 → (((𝑃𝑁) − 1) < (𝑃𝑁) → (𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + ((𝑃𝑁) − 1))C((𝑃𝑁) − 1))) = 0))
25085, 249mpd 15 . . . . . 6 (𝜑 → (𝑃 pCnt ((((♯‘𝑋) − (𝑃𝑁)) + ((𝑃𝑁) − 1))C((𝑃𝑁) − 1))) = 0)
25183, 250eqtr3d 2861 . . . . 5 (𝜑 → (𝑃 pCnt (((♯‘𝑋) − 1)C((𝑃𝑁) − 1))) = 0)
252 pcdiv 16192 . . . . . . 7 ((𝑃 ∈ ℙ ∧ ((♯‘𝑋) ∈ ℤ ∧ (♯‘𝑋) ≠ 0) ∧ (𝑃𝑁) ∈ ℕ) → (𝑃 pCnt ((♯‘𝑋) / (𝑃𝑁))) = ((𝑃 pCnt (♯‘𝑋)) − (𝑃 pCnt (𝑃𝑁))))
2532, 34, 76, 6, 252syl121anc 1371 . . . . . 6 (𝜑 → (𝑃 pCnt ((♯‘𝑋) / (𝑃𝑁))) = ((𝑃 pCnt (♯‘𝑋)) − (𝑃 pCnt (𝑃𝑁))))
2545nn0zd 12088 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
255 pcid 16212 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 pCnt (𝑃𝑁)) = 𝑁)
2562, 254, 255syl2anc 586 . . . . . . 7 (𝜑 → (𝑃 pCnt (𝑃𝑁)) = 𝑁)
257256oveq2d 7175 . . . . . 6 (𝜑 → ((𝑃 pCnt (♯‘𝑋)) − (𝑃 pCnt (𝑃𝑁))) = ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
258253, 257eqtrd 2859 . . . . 5 (𝜑 → (𝑃 pCnt ((♯‘𝑋) / (𝑃𝑁))) = ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
259251, 258oveq12d 7177 . . . 4 (𝜑 → ((𝑃 pCnt (((♯‘𝑋) − 1)C((𝑃𝑁) − 1))) + (𝑃 pCnt ((♯‘𝑋) / (𝑃𝑁)))) = (0 + ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
2602, 27pccld 16190 . . . . . . . 8 (𝜑 → (𝑃 pCnt (♯‘𝑋)) ∈ ℕ0)
261260nn0zd 12088 . . . . . . 7 (𝜑 → (𝑃 pCnt (♯‘𝑋)) ∈ ℤ)
262261, 254zsubcld 12095 . . . . . 6 (𝜑 → ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ∈ ℤ)
263262zcnd 12091 . . . . 5 (𝜑 → ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ∈ ℂ)
264263addid2d 10844 . . . 4 (𝜑 → (0 + ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) = ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
26579, 259, 2643eqtrd 2863 . . 3 (𝜑 → (𝑃 pCnt ((((♯‘𝑋) − 1)C((𝑃𝑁) − 1)) · ((♯‘𝑋) / (𝑃𝑁)))) = ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
26666, 67, 2653eqtr3d 2867 . 2 (𝜑 → (𝑃 pCnt (♯‘𝑆)) = ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
26740, 266jca 514 1 (𝜑 → ((♯‘𝑆) ∈ ℕ ∧ (𝑃 pCnt (♯‘𝑆)) = ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1536  wcel 2113  wne 3019  {crab 3145  c0 4294  𝒫 cpw 4542   class class class wbr 5069  cfv 6358  (class class class)co 7159  Fincfn 8512  cc 10538  cr 10539  0cc0 10540  1c1 10541   + caddc 10543   · cmul 10545   < clt 10678  cle 10679  cmin 10873   / cdiv 11300  cn 11641  0cn0 11900  cz 11984  cuz 12246  cq 12351  +crp 12392  ...cfz 12895  cexp 13432  Ccbc 13665  chash 13693  cdvds 15610  cprime 16018   pCnt cpc 16176  Basecbs 16486  +gcplusg 16568  Grpcgrp 18106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-sup 8909  df-inf 8910  df-dju 9333  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-fz 12896  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-dvds 15611  df-gcd 15847  df-prm 16019  df-pc 16177  df-0g 16718  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-grp 18109
This theorem is referenced by:  sylow1lem3  18728
  Copyright terms: Public domain W3C validator