MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow1lem3 Structured version   Visualization version   GIF version

Theorem sylow1lem3 17936
Description: Lemma for sylow1 17939. One of the orbits of the group action has p-adic valuation less than the prime count of the set 𝑆. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
sylow1.x 𝑋 = (Base‘𝐺)
sylow1.g (𝜑𝐺 ∈ Grp)
sylow1.f (𝜑𝑋 ∈ Fin)
sylow1.p (𝜑𝑃 ∈ ℙ)
sylow1.n (𝜑𝑁 ∈ ℕ0)
sylow1.d (𝜑 → (𝑃𝑁) ∥ (#‘𝑋))
sylow1lem.a + = (+g𝐺)
sylow1lem.s 𝑆 = {𝑠 ∈ 𝒫 𝑋 ∣ (#‘𝑠) = (𝑃𝑁)}
sylow1lem.m = (𝑥𝑋, 𝑦𝑆 ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
sylow1lem3.1 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑆 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
Assertion
Ref Expression
sylow1lem3 (𝜑 → ∃𝑤𝑆 (𝑃 pCnt (#‘[𝑤] )) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁))
Distinct variable groups:   𝑔,𝑠,𝑥,𝑦,𝑧,𝑤   𝑆,𝑔   𝑥,𝑤,𝑦,𝑧,𝑆   𝑔,𝑁   𝑤,𝑠,𝑁,𝑥,𝑦,𝑧   𝑔,𝑋,𝑠,𝑤,𝑥,𝑦,𝑧   + ,𝑠,𝑤,𝑥,𝑦,𝑧   𝑤, ,𝑧   ,𝑔,𝑤,𝑥,𝑦,𝑧   𝑔,𝐺,𝑠,𝑥,𝑦,𝑧   𝑃,𝑔,𝑠,𝑤,𝑥,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑤,𝑔,𝑠)   + (𝑔)   (𝑠)   (𝑥,𝑦,𝑔,𝑠)   𝑆(𝑠)   𝐺(𝑤)

Proof of Theorem sylow1lem3
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 sylow1.p . . . . . 6 (𝜑𝑃 ∈ ℙ)
2 sylow1.x . . . . . . . 8 𝑋 = (Base‘𝐺)
3 sylow1.g . . . . . . . 8 (𝜑𝐺 ∈ Grp)
4 sylow1.f . . . . . . . 8 (𝜑𝑋 ∈ Fin)
5 sylow1.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
6 sylow1.d . . . . . . . 8 (𝜑 → (𝑃𝑁) ∥ (#‘𝑋))
7 sylow1lem.a . . . . . . . 8 + = (+g𝐺)
8 sylow1lem.s . . . . . . . 8 𝑆 = {𝑠 ∈ 𝒫 𝑋 ∣ (#‘𝑠) = (𝑃𝑁)}
92, 3, 4, 1, 5, 6, 7, 8sylow1lem1 17934 . . . . . . 7 (𝜑 → ((#‘𝑆) ∈ ℕ ∧ (𝑃 pCnt (#‘𝑆)) = ((𝑃 pCnt (#‘𝑋)) − 𝑁)))
109simpld 475 . . . . . 6 (𝜑 → (#‘𝑆) ∈ ℕ)
11 pcndvds 15494 . . . . . 6 ((𝑃 ∈ ℙ ∧ (#‘𝑆) ∈ ℕ) → ¬ (𝑃↑((𝑃 pCnt (#‘𝑆)) + 1)) ∥ (#‘𝑆))
121, 10, 11syl2anc 692 . . . . 5 (𝜑 → ¬ (𝑃↑((𝑃 pCnt (#‘𝑆)) + 1)) ∥ (#‘𝑆))
139simprd 479 . . . . . . . 8 (𝜑 → (𝑃 pCnt (#‘𝑆)) = ((𝑃 pCnt (#‘𝑋)) − 𝑁))
1413oveq1d 6619 . . . . . . 7 (𝜑 → ((𝑃 pCnt (#‘𝑆)) + 1) = (((𝑃 pCnt (#‘𝑋)) − 𝑁) + 1))
1514oveq2d 6620 . . . . . 6 (𝜑 → (𝑃↑((𝑃 pCnt (#‘𝑆)) + 1)) = (𝑃↑(((𝑃 pCnt (#‘𝑋)) − 𝑁) + 1)))
16 sylow1lem.m . . . . . . . . 9 = (𝑥𝑋, 𝑦𝑆 ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
172, 3, 4, 1, 5, 6, 7, 8, 16sylow1lem2 17935 . . . . . . . 8 (𝜑 ∈ (𝐺 GrpAct 𝑆))
18 sylow1lem3.1 . . . . . . . . 9 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑆 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
1918, 2gaorber 17662 . . . . . . . 8 ( ∈ (𝐺 GrpAct 𝑆) → Er 𝑆)
2017, 19syl 17 . . . . . . 7 (𝜑 Er 𝑆)
21 pwfi 8205 . . . . . . . . 9 (𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin)
224, 21sylib 208 . . . . . . . 8 (𝜑 → 𝒫 𝑋 ∈ Fin)
23 ssrab2 3666 . . . . . . . . 9 {𝑠 ∈ 𝒫 𝑋 ∣ (#‘𝑠) = (𝑃𝑁)} ⊆ 𝒫 𝑋
248, 23eqsstri 3614 . . . . . . . 8 𝑆 ⊆ 𝒫 𝑋
25 ssfi 8124 . . . . . . . 8 ((𝒫 𝑋 ∈ Fin ∧ 𝑆 ⊆ 𝒫 𝑋) → 𝑆 ∈ Fin)
2622, 24, 25sylancl 693 . . . . . . 7 (𝜑𝑆 ∈ Fin)
2720, 26qshash 14484 . . . . . 6 (𝜑 → (#‘𝑆) = Σ𝑧 ∈ (𝑆 / )(#‘𝑧))
2815, 27breq12d 4626 . . . . 5 (𝜑 → ((𝑃↑((𝑃 pCnt (#‘𝑆)) + 1)) ∥ (#‘𝑆) ↔ (𝑃↑(((𝑃 pCnt (#‘𝑋)) − 𝑁) + 1)) ∥ Σ𝑧 ∈ (𝑆 / )(#‘𝑧)))
2912, 28mtbid 314 . . . 4 (𝜑 → ¬ (𝑃↑(((𝑃 pCnt (#‘𝑋)) − 𝑁) + 1)) ∥ Σ𝑧 ∈ (𝑆 / )(#‘𝑧))
30 pwfi 8205 . . . . . . . 8 (𝑆 ∈ Fin ↔ 𝒫 𝑆 ∈ Fin)
3126, 30sylib 208 . . . . . . 7 (𝜑 → 𝒫 𝑆 ∈ Fin)
3220qsss 7753 . . . . . . 7 (𝜑 → (𝑆 / ) ⊆ 𝒫 𝑆)
33 ssfi 8124 . . . . . . 7 ((𝒫 𝑆 ∈ Fin ∧ (𝑆 / ) ⊆ 𝒫 𝑆) → (𝑆 / ) ∈ Fin)
3431, 32, 33syl2anc 692 . . . . . 6 (𝜑 → (𝑆 / ) ∈ Fin)
3534adantr 481 . . . . 5 ((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)) → (𝑆 / ) ∈ Fin)
36 prmnn 15312 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
371, 36syl 17 . . . . . . . 8 (𝜑𝑃 ∈ ℕ)
381, 10pccld 15479 . . . . . . . . . 10 (𝜑 → (𝑃 pCnt (#‘𝑆)) ∈ ℕ0)
3913, 38eqeltrrd 2699 . . . . . . . . 9 (𝜑 → ((𝑃 pCnt (#‘𝑋)) − 𝑁) ∈ ℕ0)
40 peano2nn0 11277 . . . . . . . . 9 (((𝑃 pCnt (#‘𝑋)) − 𝑁) ∈ ℕ0 → (((𝑃 pCnt (#‘𝑋)) − 𝑁) + 1) ∈ ℕ0)
4139, 40syl 17 . . . . . . . 8 (𝜑 → (((𝑃 pCnt (#‘𝑋)) − 𝑁) + 1) ∈ ℕ0)
4237, 41nnexpcld 12970 . . . . . . 7 (𝜑 → (𝑃↑(((𝑃 pCnt (#‘𝑋)) − 𝑁) + 1)) ∈ ℕ)
4342nnzd 11425 . . . . . 6 (𝜑 → (𝑃↑(((𝑃 pCnt (#‘𝑋)) − 𝑁) + 1)) ∈ ℤ)
4443adantr 481 . . . . 5 ((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)) → (𝑃↑(((𝑃 pCnt (#‘𝑋)) − 𝑁) + 1)) ∈ ℤ)
45 erdm 7697 . . . . . . . . . 10 ( Er 𝑆 → dom = 𝑆)
4620, 45syl 17 . . . . . . . . 9 (𝜑 → dom = 𝑆)
47 elqsn0 7761 . . . . . . . . 9 ((dom = 𝑆𝑧 ∈ (𝑆 / )) → 𝑧 ≠ ∅)
4846, 47sylan 488 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑆 / )) → 𝑧 ≠ ∅)
4926adantr 481 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝑆 / )) → 𝑆 ∈ Fin)
5032sselda 3583 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝑆 / )) → 𝑧 ∈ 𝒫 𝑆)
5150elpwid 4141 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝑆 / )) → 𝑧𝑆)
52 ssfi 8124 . . . . . . . . . 10 ((𝑆 ∈ Fin ∧ 𝑧𝑆) → 𝑧 ∈ Fin)
5349, 51, 52syl2anc 692 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝑆 / )) → 𝑧 ∈ Fin)
54 hashnncl 13097 . . . . . . . . 9 (𝑧 ∈ Fin → ((#‘𝑧) ∈ ℕ ↔ 𝑧 ≠ ∅))
5553, 54syl 17 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑆 / )) → ((#‘𝑧) ∈ ℕ ↔ 𝑧 ≠ ∅))
5648, 55mpbird 247 . . . . . . 7 ((𝜑𝑧 ∈ (𝑆 / )) → (#‘𝑧) ∈ ℕ)
5756adantlr 750 . . . . . 6 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (#‘𝑧) ∈ ℕ)
5857nnzd 11425 . . . . 5 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (#‘𝑧) ∈ ℤ)
59 fveq2 6148 . . . . . . . . . . . . 13 (𝑎 = 𝑧 → (#‘𝑎) = (#‘𝑧))
6059oveq2d 6620 . . . . . . . . . . . 12 (𝑎 = 𝑧 → (𝑃 pCnt (#‘𝑎)) = (𝑃 pCnt (#‘𝑧)))
6160breq1d 4623 . . . . . . . . . . 11 (𝑎 = 𝑧 → ((𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁) ↔ (𝑃 pCnt (#‘𝑧)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)))
6261notbid 308 . . . . . . . . . 10 (𝑎 = 𝑧 → (¬ (𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁) ↔ ¬ (𝑃 pCnt (#‘𝑧)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)))
6362rspccva 3294 . . . . . . . . 9 ((∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁) ∧ 𝑧 ∈ (𝑆 / )) → ¬ (𝑃 pCnt (#‘𝑧)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁))
6463adantll 749 . . . . . . . 8 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → ¬ (𝑃 pCnt (#‘𝑧)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁))
652grpbn0 17372 . . . . . . . . . . . . . . . 16 (𝐺 ∈ Grp → 𝑋 ≠ ∅)
663, 65syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑋 ≠ ∅)
67 hashnncl 13097 . . . . . . . . . . . . . . . 16 (𝑋 ∈ Fin → ((#‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
684, 67syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((#‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
6966, 68mpbird 247 . . . . . . . . . . . . . 14 (𝜑 → (#‘𝑋) ∈ ℕ)
701, 69pccld 15479 . . . . . . . . . . . . 13 (𝜑 → (𝑃 pCnt (#‘𝑋)) ∈ ℕ0)
7170nn0zd 11424 . . . . . . . . . . . 12 (𝜑 → (𝑃 pCnt (#‘𝑋)) ∈ ℤ)
725nn0zd 11424 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
7371, 72zsubcld 11431 . . . . . . . . . . 11 (𝜑 → ((𝑃 pCnt (#‘𝑋)) − 𝑁) ∈ ℤ)
7473ad2antrr 761 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → ((𝑃 pCnt (#‘𝑋)) − 𝑁) ∈ ℤ)
7574zred 11426 . . . . . . . . 9 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → ((𝑃 pCnt (#‘𝑋)) − 𝑁) ∈ ℝ)
761ad2antrr 761 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → 𝑃 ∈ ℙ)
7776, 57pccld 15479 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (𝑃 pCnt (#‘𝑧)) ∈ ℕ0)
7877nn0zd 11424 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (𝑃 pCnt (#‘𝑧)) ∈ ℤ)
7978zred 11426 . . . . . . . . 9 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (𝑃 pCnt (#‘𝑧)) ∈ ℝ)
8075, 79ltnled 10128 . . . . . . . 8 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (((𝑃 pCnt (#‘𝑋)) − 𝑁) < (𝑃 pCnt (#‘𝑧)) ↔ ¬ (𝑃 pCnt (#‘𝑧)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)))
8164, 80mpbird 247 . . . . . . 7 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → ((𝑃 pCnt (#‘𝑋)) − 𝑁) < (𝑃 pCnt (#‘𝑧)))
82 zltp1le 11371 . . . . . . . 8 ((((𝑃 pCnt (#‘𝑋)) − 𝑁) ∈ ℤ ∧ (𝑃 pCnt (#‘𝑧)) ∈ ℤ) → (((𝑃 pCnt (#‘𝑋)) − 𝑁) < (𝑃 pCnt (#‘𝑧)) ↔ (((𝑃 pCnt (#‘𝑋)) − 𝑁) + 1) ≤ (𝑃 pCnt (#‘𝑧))))
8374, 78, 82syl2anc 692 . . . . . . 7 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (((𝑃 pCnt (#‘𝑋)) − 𝑁) < (𝑃 pCnt (#‘𝑧)) ↔ (((𝑃 pCnt (#‘𝑋)) − 𝑁) + 1) ≤ (𝑃 pCnt (#‘𝑧))))
8481, 83mpbid 222 . . . . . 6 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (((𝑃 pCnt (#‘𝑋)) − 𝑁) + 1) ≤ (𝑃 pCnt (#‘𝑧)))
8541ad2antrr 761 . . . . . . 7 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (((𝑃 pCnt (#‘𝑋)) − 𝑁) + 1) ∈ ℕ0)
86 pcdvdsb 15497 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (#‘𝑧) ∈ ℤ ∧ (((𝑃 pCnt (#‘𝑋)) − 𝑁) + 1) ∈ ℕ0) → ((((𝑃 pCnt (#‘𝑋)) − 𝑁) + 1) ≤ (𝑃 pCnt (#‘𝑧)) ↔ (𝑃↑(((𝑃 pCnt (#‘𝑋)) − 𝑁) + 1)) ∥ (#‘𝑧)))
8776, 58, 85, 86syl3anc 1323 . . . . . 6 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → ((((𝑃 pCnt (#‘𝑋)) − 𝑁) + 1) ≤ (𝑃 pCnt (#‘𝑧)) ↔ (𝑃↑(((𝑃 pCnt (#‘𝑋)) − 𝑁) + 1)) ∥ (#‘𝑧)))
8884, 87mpbid 222 . . . . 5 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (𝑃↑(((𝑃 pCnt (#‘𝑋)) − 𝑁) + 1)) ∥ (#‘𝑧))
8935, 44, 58, 88fsumdvds 14954 . . . 4 ((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)) → (𝑃↑(((𝑃 pCnt (#‘𝑋)) − 𝑁) + 1)) ∥ Σ𝑧 ∈ (𝑆 / )(#‘𝑧))
9029, 89mtand 690 . . 3 (𝜑 → ¬ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁))
91 dfrex2 2990 . . 3 (∃𝑎 ∈ (𝑆 / )(𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁) ↔ ¬ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁))
9290, 91sylibr 224 . 2 (𝜑 → ∃𝑎 ∈ (𝑆 / )(𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁))
93 eqid 2621 . . . 4 (𝑆 / ) = (𝑆 / )
94 fveq2 6148 . . . . . . 7 ([𝑧] = 𝑎 → (#‘[𝑧] ) = (#‘𝑎))
9594oveq2d 6620 . . . . . 6 ([𝑧] = 𝑎 → (𝑃 pCnt (#‘[𝑧] )) = (𝑃 pCnt (#‘𝑎)))
9695breq1d 4623 . . . . 5 ([𝑧] = 𝑎 → ((𝑃 pCnt (#‘[𝑧] )) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁) ↔ (𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)))
9796imbi1d 331 . . . 4 ([𝑧] = 𝑎 → (((𝑃 pCnt (#‘[𝑧] )) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁) → ∃𝑤𝑆 (𝑃 pCnt (#‘[𝑤] )) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)) ↔ ((𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁) → ∃𝑤𝑆 (𝑃 pCnt (#‘[𝑤] )) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁))))
98 eceq1 7727 . . . . . . . . . 10 (𝑤 = 𝑧 → [𝑤] = [𝑧] )
9998fveq2d 6152 . . . . . . . . 9 (𝑤 = 𝑧 → (#‘[𝑤] ) = (#‘[𝑧] ))
10099oveq2d 6620 . . . . . . . 8 (𝑤 = 𝑧 → (𝑃 pCnt (#‘[𝑤] )) = (𝑃 pCnt (#‘[𝑧] )))
101100breq1d 4623 . . . . . . 7 (𝑤 = 𝑧 → ((𝑃 pCnt (#‘[𝑤] )) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁) ↔ (𝑃 pCnt (#‘[𝑧] )) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)))
102101rspcev 3295 . . . . . 6 ((𝑧𝑆 ∧ (𝑃 pCnt (#‘[𝑧] )) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)) → ∃𝑤𝑆 (𝑃 pCnt (#‘[𝑤] )) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁))
103102ex 450 . . . . 5 (𝑧𝑆 → ((𝑃 pCnt (#‘[𝑧] )) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁) → ∃𝑤𝑆 (𝑃 pCnt (#‘[𝑤] )) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)))
104103adantl 482 . . . 4 ((𝜑𝑧𝑆) → ((𝑃 pCnt (#‘[𝑧] )) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁) → ∃𝑤𝑆 (𝑃 pCnt (#‘[𝑤] )) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)))
10593, 97, 104ectocld 7759 . . 3 ((𝜑𝑎 ∈ (𝑆 / )) → ((𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁) → ∃𝑤𝑆 (𝑃 pCnt (#‘[𝑤] )) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)))
106105rexlimdva 3024 . 2 (𝜑 → (∃𝑎 ∈ (𝑆 / )(𝑃 pCnt (#‘𝑎)) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁) → ∃𝑤𝑆 (𝑃 pCnt (#‘[𝑤] )) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁)))
10792, 106mpd 15 1 (𝜑 → ∃𝑤𝑆 (𝑃 pCnt (#‘[𝑤] )) ≤ ((𝑃 pCnt (#‘𝑋)) − 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790  wral 2907  wrex 2908  {crab 2911  wss 3555  c0 3891  𝒫 cpw 4130  {cpr 4150   class class class wbr 4613  {copab 4672  cmpt 4673  dom cdm 5074  ran crn 5075  cfv 5847  (class class class)co 6604  cmpt2 6606   Er wer 7684  [cec 7685   / cqs 7686  Fincfn 7899  1c1 9881   + caddc 9883   < clt 10018  cle 10019  cmin 10210  cn 10964  0cn0 11236  cz 11321  cexp 12800  #chash 13057  Σcsu 14350  cdvds 14907  cprime 15309   pCnt cpc 15465  Basecbs 15781  +gcplusg 15862  Grpcgrp 17343   GrpAct cga 17643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-disj 4584  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-ec 7689  df-qs 7693  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-q 11733  df-rp 11777  df-fz 12269  df-fzo 12407  df-fl 12533  df-mod 12609  df-seq 12742  df-exp 12801  df-fac 13001  df-bc 13030  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-sum 14351  df-dvds 14908  df-gcd 15141  df-prm 15310  df-pc 15466  df-0g 16023  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-grp 17346  df-minusg 17347  df-ga 17644
This theorem is referenced by:  sylow1  17939
  Copyright terms: Public domain W3C validator