MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow2 Structured version   Visualization version   GIF version

Theorem sylow2 18750
Description: Sylow's second theorem. See also sylow2b 18747 for the "hard" part of the proof. Any two Sylow 𝑃-subgroups are conjugate to one another, and hence the same size, namely 𝑃↑(𝑃 pCnt ∣ 𝑋 ∣ ) (see fislw 18749). This is part of Metamath 100 proof #72. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
sylow2.x 𝑋 = (Base‘𝐺)
sylow2.f (𝜑𝑋 ∈ Fin)
sylow2.h (𝜑𝐻 ∈ (𝑃 pSyl 𝐺))
sylow2.k (𝜑𝐾 ∈ (𝑃 pSyl 𝐺))
sylow2.a + = (+g𝐺)
sylow2.d = (-g𝐺)
Assertion
Ref Expression
sylow2 (𝜑 → ∃𝑔𝑋 𝐻 = ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))
Distinct variable groups:   𝑥,   𝑥,𝑔, +   𝑔,𝐺,𝑥   𝑔,𝐻,𝑥   𝑔,𝐾,𝑥   𝜑,𝑔   𝑔,𝑋,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑃(𝑥,𝑔)   (𝑔)

Proof of Theorem sylow2
StepHypRef Expression
1 sylow2.f . . . . 5 (𝜑𝑋 ∈ Fin)
21adantr 483 . . . 4 ((𝜑 ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))) → 𝑋 ∈ Fin)
3 sylow2.k . . . . . . 7 (𝜑𝐾 ∈ (𝑃 pSyl 𝐺))
4 slwsubg 18734 . . . . . . 7 (𝐾 ∈ (𝑃 pSyl 𝐺) → 𝐾 ∈ (SubGrp‘𝐺))
53, 4syl 17 . . . . . 6 (𝜑𝐾 ∈ (SubGrp‘𝐺))
6 simprl 769 . . . . . 6 ((𝜑 ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))) → 𝑔𝑋)
7 sylow2.x . . . . . . 7 𝑋 = (Base‘𝐺)
8 sylow2.a . . . . . . 7 + = (+g𝐺)
9 sylow2.d . . . . . . 7 = (-g𝐺)
10 eqid 2821 . . . . . . 7 (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)) = (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔))
117, 8, 9, 10conjsubg 18389 . . . . . 6 ((𝐾 ∈ (SubGrp‘𝐺) ∧ 𝑔𝑋) → ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)) ∈ (SubGrp‘𝐺))
125, 6, 11syl2an2r 683 . . . . 5 ((𝜑 ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))) → ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)) ∈ (SubGrp‘𝐺))
137subgss 18279 . . . . 5 (ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)) ∈ (SubGrp‘𝐺) → ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)) ⊆ 𝑋)
1412, 13syl 17 . . . 4 ((𝜑 ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))) → ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)) ⊆ 𝑋)
152, 14ssfid 8740 . . 3 ((𝜑 ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))) → ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)) ∈ Fin)
16 simprr 771 . . 3 ((𝜑 ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))) → 𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))
17 sylow2.h . . . . . . 7 (𝜑𝐻 ∈ (𝑃 pSyl 𝐺))
187, 1, 17slwhash 18748 . . . . . 6 (𝜑 → (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
197, 1, 3slwhash 18748 . . . . . 6 (𝜑 → (♯‘𝐾) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
2018, 19eqtr4d 2859 . . . . 5 (𝜑 → (♯‘𝐻) = (♯‘𝐾))
21 slwsubg 18734 . . . . . . . . 9 (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝐻 ∈ (SubGrp‘𝐺))
2217, 21syl 17 . . . . . . . 8 (𝜑𝐻 ∈ (SubGrp‘𝐺))
237subgss 18279 . . . . . . . 8 (𝐻 ∈ (SubGrp‘𝐺) → 𝐻𝑋)
2422, 23syl 17 . . . . . . 7 (𝜑𝐻𝑋)
251, 24ssfid 8740 . . . . . 6 (𝜑𝐻 ∈ Fin)
267subgss 18279 . . . . . . . 8 (𝐾 ∈ (SubGrp‘𝐺) → 𝐾𝑋)
275, 26syl 17 . . . . . . 7 (𝜑𝐾𝑋)
281, 27ssfid 8740 . . . . . 6 (𝜑𝐾 ∈ Fin)
29 hashen 13706 . . . . . 6 ((𝐻 ∈ Fin ∧ 𝐾 ∈ Fin) → ((♯‘𝐻) = (♯‘𝐾) ↔ 𝐻𝐾))
3025, 28, 29syl2anc 586 . . . . 5 (𝜑 → ((♯‘𝐻) = (♯‘𝐾) ↔ 𝐻𝐾))
3120, 30mpbid 234 . . . 4 (𝜑𝐻𝐾)
327, 8, 9, 10conjsubgen 18390 . . . . 5 ((𝐾 ∈ (SubGrp‘𝐺) ∧ 𝑔𝑋) → 𝐾 ≈ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))
335, 6, 32syl2an2r 683 . . . 4 ((𝜑 ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))) → 𝐾 ≈ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))
34 entr 8560 . . . 4 ((𝐻𝐾𝐾 ≈ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔))) → 𝐻 ≈ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))
3531, 33, 34syl2an2r 683 . . 3 ((𝜑 ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))) → 𝐻 ≈ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))
36 fisseneq 8728 . . 3 ((ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)) ∈ Fin ∧ 𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)) ∧ 𝐻 ≈ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔))) → 𝐻 = ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))
3715, 16, 35, 36syl3anc 1367 . 2 ((𝜑 ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))) → 𝐻 = ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))
38 eqid 2821 . . . . 5 (𝐺s 𝐻) = (𝐺s 𝐻)
3938slwpgp 18737 . . . 4 (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝑃 pGrp (𝐺s 𝐻))
4017, 39syl 17 . . 3 (𝜑𝑃 pGrp (𝐺s 𝐻))
417, 1, 22, 5, 8, 40, 19, 9sylow2b 18747 . 2 (𝜑 → ∃𝑔𝑋 𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))
4237, 41reximddv 3275 1 (𝜑 → ∃𝑔𝑋 𝐻 = ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wrex 3139  wss 3935   class class class wbr 5065  cmpt 5145  ran crn 5555  cfv 6354  (class class class)co 7155  cen 8505  Fincfn 8508  cexp 13428  chash 13689   pCnt cpc 16172  Basecbs 16482  s cress 16483  +gcplusg 16564  -gcsg 18104  SubGrpcsubg 18272   pGrp cpgp 18653   pSyl cslw 18654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-disj 5031  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-omul 8106  df-er 8288  df-ec 8290  df-qs 8294  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-sup 8905  df-inf 8906  df-oi 8973  df-dju 9329  df-card 9367  df-acn 9370  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-n0 11897  df-xnn0 11967  df-z 11981  df-uz 12243  df-q 12348  df-rp 12389  df-fz 12892  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13429  df-fac 13633  df-bc 13662  df-hash 13690  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-clim 14844  df-sum 15042  df-dvds 15607  df-gcd 15843  df-prm 16015  df-pc 16173  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-0g 16714  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-submnd 17956  df-grp 18105  df-minusg 18106  df-sbg 18107  df-mulg 18224  df-subg 18275  df-eqg 18277  df-ghm 18355  df-ga 18419  df-od 18655  df-pgp 18657  df-slw 18658
This theorem is referenced by:  sylow3lem3  18753  sylow3lem6  18756
  Copyright terms: Public domain W3C validator