MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow2a Structured version   Visualization version   GIF version

Theorem sylow2a 17962
Description: A named lemma of Sylow's second and third theorems. If 𝐺 is a finite 𝑃-group that acts on the finite set 𝑌, then the set 𝑍 of all points of 𝑌 fixed by every element of 𝐺 has cardinality equivalent to the cardinality of 𝑌, mod 𝑃. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypotheses
Ref Expression
sylow2a.x 𝑋 = (Base‘𝐺)
sylow2a.m (𝜑 ∈ (𝐺 GrpAct 𝑌))
sylow2a.p (𝜑𝑃 pGrp 𝐺)
sylow2a.f (𝜑𝑋 ∈ Fin)
sylow2a.y (𝜑𝑌 ∈ Fin)
sylow2a.z 𝑍 = {𝑢𝑌 ∣ ∀𝑋 ( 𝑢) = 𝑢}
sylow2a.r = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
Assertion
Ref Expression
sylow2a (𝜑𝑃 ∥ ((#‘𝑌) − (#‘𝑍)))
Distinct variable groups:   ,   𝑔,,𝑢,𝑥,𝑦   𝑔,𝐺,𝑥,𝑦   ,𝑔,,𝑢,𝑥,𝑦   𝑔,𝑋,,𝑢,𝑥,𝑦   𝜑,   𝑔,𝑌,,𝑢,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑢,𝑔)   𝑃(𝑥,𝑦,𝑢,𝑔,)   (𝑥,𝑦,𝑢,𝑔)   𝐺(𝑢,)   𝑍(𝑥,𝑦,𝑢,𝑔,)

Proof of Theorem sylow2a
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow2a.x . . 3 𝑋 = (Base‘𝐺)
2 sylow2a.m . . 3 (𝜑 ∈ (𝐺 GrpAct 𝑌))
3 sylow2a.p . . 3 (𝜑𝑃 pGrp 𝐺)
4 sylow2a.f . . 3 (𝜑𝑋 ∈ Fin)
5 sylow2a.y . . 3 (𝜑𝑌 ∈ Fin)
6 sylow2a.z . . 3 𝑍 = {𝑢𝑌 ∣ ∀𝑋 ( 𝑢) = 𝑢}
7 sylow2a.r . . 3 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
81, 2, 3, 4, 5, 6, 7sylow2alem2 17961 . 2 (𝜑𝑃 ∥ Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(#‘𝑧))
9 inass 3806 . . . . . . 7 (((𝑌 / ) ∩ 𝒫 𝑍) ∩ ((𝑌 / ) ∖ 𝒫 𝑍)) = ((𝑌 / ) ∩ (𝒫 𝑍 ∩ ((𝑌 / ) ∖ 𝒫 𝑍)))
10 disjdif 4017 . . . . . . . 8 (𝒫 𝑍 ∩ ((𝑌 / ) ∖ 𝒫 𝑍)) = ∅
1110ineq2i 3794 . . . . . . 7 ((𝑌 / ) ∩ (𝒫 𝑍 ∩ ((𝑌 / ) ∖ 𝒫 𝑍))) = ((𝑌 / ) ∩ ∅)
12 in0 3945 . . . . . . 7 ((𝑌 / ) ∩ ∅) = ∅
139, 11, 123eqtri 2647 . . . . . 6 (((𝑌 / ) ∩ 𝒫 𝑍) ∩ ((𝑌 / ) ∖ 𝒫 𝑍)) = ∅
1413a1i 11 . . . . 5 (𝜑 → (((𝑌 / ) ∩ 𝒫 𝑍) ∩ ((𝑌 / ) ∖ 𝒫 𝑍)) = ∅)
15 inundif 4023 . . . . . . 7 (((𝑌 / ) ∩ 𝒫 𝑍) ∪ ((𝑌 / ) ∖ 𝒫 𝑍)) = (𝑌 / )
1615eqcomi 2630 . . . . . 6 (𝑌 / ) = (((𝑌 / ) ∩ 𝒫 𝑍) ∪ ((𝑌 / ) ∖ 𝒫 𝑍))
1716a1i 11 . . . . 5 (𝜑 → (𝑌 / ) = (((𝑌 / ) ∩ 𝒫 𝑍) ∪ ((𝑌 / ) ∖ 𝒫 𝑍)))
18 pwfi 8212 . . . . . . 7 (𝑌 ∈ Fin ↔ 𝒫 𝑌 ∈ Fin)
195, 18sylib 208 . . . . . 6 (𝜑 → 𝒫 𝑌 ∈ Fin)
207, 1gaorber 17669 . . . . . . . 8 ( ∈ (𝐺 GrpAct 𝑌) → Er 𝑌)
212, 20syl 17 . . . . . . 7 (𝜑 Er 𝑌)
2221qsss 7760 . . . . . 6 (𝜑 → (𝑌 / ) ⊆ 𝒫 𝑌)
2319, 22ssfid 8134 . . . . 5 (𝜑 → (𝑌 / ) ∈ Fin)
245adantr 481 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑌 / )) → 𝑌 ∈ Fin)
2522sselda 3587 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝑌 / )) → 𝑧 ∈ 𝒫 𝑌)
2625elpwid 4146 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑌 / )) → 𝑧𝑌)
2724, 26ssfid 8134 . . . . . . 7 ((𝜑𝑧 ∈ (𝑌 / )) → 𝑧 ∈ Fin)
28 hashcl 13094 . . . . . . 7 (𝑧 ∈ Fin → (#‘𝑧) ∈ ℕ0)
2927, 28syl 17 . . . . . 6 ((𝜑𝑧 ∈ (𝑌 / )) → (#‘𝑧) ∈ ℕ0)
3029nn0cnd 11304 . . . . 5 ((𝜑𝑧 ∈ (𝑌 / )) → (#‘𝑧) ∈ ℂ)
3114, 17, 23, 30fsumsplit 14411 . . . 4 (𝜑 → Σ𝑧 ∈ (𝑌 / )(#‘𝑧) = (Σ𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)(#‘𝑧) + Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(#‘𝑧)))
3221, 5qshash 14491 . . . 4 (𝜑 → (#‘𝑌) = Σ𝑧 ∈ (𝑌 / )(#‘𝑧))
33 inss1 3816 . . . . . . . 8 ((𝑌 / ) ∩ 𝒫 𝑍) ⊆ (𝑌 / )
34 ssfi 8131 . . . . . . . 8 (((𝑌 / ) ∈ Fin ∧ ((𝑌 / ) ∩ 𝒫 𝑍) ⊆ (𝑌 / )) → ((𝑌 / ) ∩ 𝒫 𝑍) ∈ Fin)
3523, 33, 34sylancl 693 . . . . . . 7 (𝜑 → ((𝑌 / ) ∩ 𝒫 𝑍) ∈ Fin)
36 ax-1cn 9945 . . . . . . 7 1 ∈ ℂ
37 fsumconst 14457 . . . . . . 7 ((((𝑌 / ) ∩ 𝒫 𝑍) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)1 = ((#‘((𝑌 / ) ∩ 𝒫 𝑍)) · 1))
3835, 36, 37sylancl 693 . . . . . 6 (𝜑 → Σ𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)1 = ((#‘((𝑌 / ) ∩ 𝒫 𝑍)) · 1))
39 elin 3779 . . . . . . . . . . 11 (𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍) ↔ (𝑧 ∈ (𝑌 / ) ∧ 𝑧 ∈ 𝒫 𝑍))
40 eqid 2621 . . . . . . . . . . . . 13 (𝑌 / ) = (𝑌 / )
41 sseq1 3610 . . . . . . . . . . . . . . 15 ([𝑤] = 𝑧 → ([𝑤] 𝑍𝑧𝑍))
42 selpw 4142 . . . . . . . . . . . . . . 15 (𝑧 ∈ 𝒫 𝑍𝑧𝑍)
4341, 42syl6bbr 278 . . . . . . . . . . . . . 14 ([𝑤] = 𝑧 → ([𝑤] 𝑍𝑧 ∈ 𝒫 𝑍))
44 breq1 4621 . . . . . . . . . . . . . 14 ([𝑤] = 𝑧 → ([𝑤] ≈ 1𝑜𝑧 ≈ 1𝑜))
4543, 44imbi12d 334 . . . . . . . . . . . . 13 ([𝑤] = 𝑧 → (([𝑤] 𝑍 → [𝑤] ≈ 1𝑜) ↔ (𝑧 ∈ 𝒫 𝑍𝑧 ≈ 1𝑜)))
4621adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤𝑌) → Er 𝑌)
47 simpr 477 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤𝑌) → 𝑤𝑌)
4846, 47erref 7714 . . . . . . . . . . . . . . . 16 ((𝜑𝑤𝑌) → 𝑤 𝑤)
49 vex 3192 . . . . . . . . . . . . . . . . 17 𝑤 ∈ V
5049, 49elec 7738 . . . . . . . . . . . . . . . 16 (𝑤 ∈ [𝑤] 𝑤 𝑤)
5148, 50sylibr 224 . . . . . . . . . . . . . . 15 ((𝜑𝑤𝑌) → 𝑤 ∈ [𝑤] )
52 ssel 3581 . . . . . . . . . . . . . . 15 ([𝑤] 𝑍 → (𝑤 ∈ [𝑤] 𝑤𝑍))
5351, 52syl5com 31 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑌) → ([𝑤] 𝑍𝑤𝑍))
541, 2, 3, 4, 5, 6, 7sylow2alem1 17960 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤𝑍) → [𝑤] = {𝑤})
5549ensn1 7971 . . . . . . . . . . . . . . . . 17 {𝑤} ≈ 1𝑜
5654, 55syl6eqbr 4657 . . . . . . . . . . . . . . . 16 ((𝜑𝑤𝑍) → [𝑤] ≈ 1𝑜)
5756ex 450 . . . . . . . . . . . . . . 15 (𝜑 → (𝑤𝑍 → [𝑤] ≈ 1𝑜))
5857adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑌) → (𝑤𝑍 → [𝑤] ≈ 1𝑜))
5953, 58syld 47 . . . . . . . . . . . . 13 ((𝜑𝑤𝑌) → ([𝑤] 𝑍 → [𝑤] ≈ 1𝑜))
6040, 45, 59ectocld 7766 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝑌 / )) → (𝑧 ∈ 𝒫 𝑍𝑧 ≈ 1𝑜))
6160impr 648 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ (𝑌 / ) ∧ 𝑧 ∈ 𝒫 𝑍)) → 𝑧 ≈ 1𝑜)
6239, 61sylan2b 492 . . . . . . . . . 10 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → 𝑧 ≈ 1𝑜)
63 en1b 7975 . . . . . . . . . 10 (𝑧 ≈ 1𝑜𝑧 = { 𝑧})
6462, 63sylib 208 . . . . . . . . 9 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → 𝑧 = { 𝑧})
6564fveq2d 6157 . . . . . . . 8 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → (#‘𝑧) = (#‘{ 𝑧}))
66 vuniex 6914 . . . . . . . . 9 𝑧 ∈ V
67 hashsng 13106 . . . . . . . . 9 ( 𝑧 ∈ V → (#‘{ 𝑧}) = 1)
6866, 67ax-mp 5 . . . . . . . 8 (#‘{ 𝑧}) = 1
6965, 68syl6eq 2671 . . . . . . 7 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → (#‘𝑧) = 1)
7069sumeq2dv 14374 . . . . . 6 (𝜑 → Σ𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)(#‘𝑧) = Σ𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)1)
71 ssrab2 3671 . . . . . . . . . . . 12 {𝑢𝑌 ∣ ∀𝑋 ( 𝑢) = 𝑢} ⊆ 𝑌
726, 71eqsstri 3619 . . . . . . . . . . 11 𝑍𝑌
73 ssfi 8131 . . . . . . . . . . 11 ((𝑌 ∈ Fin ∧ 𝑍𝑌) → 𝑍 ∈ Fin)
745, 72, 73sylancl 693 . . . . . . . . . 10 (𝜑𝑍 ∈ Fin)
75 hashcl 13094 . . . . . . . . . 10 (𝑍 ∈ Fin → (#‘𝑍) ∈ ℕ0)
7674, 75syl 17 . . . . . . . . 9 (𝜑 → (#‘𝑍) ∈ ℕ0)
7776nn0cnd 11304 . . . . . . . 8 (𝜑 → (#‘𝑍) ∈ ℂ)
7877mulid1d 10008 . . . . . . 7 (𝜑 → ((#‘𝑍) · 1) = (#‘𝑍))
796, 5rabexd 4779 . . . . . . . . . 10 (𝜑𝑍 ∈ V)
80 inss2 3817 . . . . . . . . . . 11 ((𝑌 / ) ∩ 𝒫 𝑍) ⊆ 𝒫 𝑍
81 pwexg 4815 . . . . . . . . . . . 12 (𝑍 ∈ Fin → 𝒫 𝑍 ∈ V)
8274, 81syl 17 . . . . . . . . . . 11 (𝜑 → 𝒫 𝑍 ∈ V)
83 ssexg 4769 . . . . . . . . . . 11 ((((𝑌 / ) ∩ 𝒫 𝑍) ⊆ 𝒫 𝑍 ∧ 𝒫 𝑍 ∈ V) → ((𝑌 / ) ∩ 𝒫 𝑍) ∈ V)
8480, 82, 83sylancr 694 . . . . . . . . . 10 (𝜑 → ((𝑌 / ) ∩ 𝒫 𝑍) ∈ V)
857relopabi 5210 . . . . . . . . . . . . . . . . 17 Rel
86 relssdmrn 5620 . . . . . . . . . . . . . . . . 17 (Rel ⊆ (dom × ran ))
8785, 86ax-mp 5 . . . . . . . . . . . . . . . 16 ⊆ (dom × ran )
88 erdm 7704 . . . . . . . . . . . . . . . . . . 19 ( Er 𝑌 → dom = 𝑌)
8921, 88syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → dom = 𝑌)
9089, 5eqeltrd 2698 . . . . . . . . . . . . . . . . 17 (𝜑 → dom ∈ Fin)
91 errn 7716 . . . . . . . . . . . . . . . . . . 19 ( Er 𝑌 → ran = 𝑌)
9221, 91syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → ran = 𝑌)
9392, 5eqeltrd 2698 . . . . . . . . . . . . . . . . 17 (𝜑 → ran ∈ Fin)
94 xpexg 6920 . . . . . . . . . . . . . . . . 17 ((dom ∈ Fin ∧ ran ∈ Fin) → (dom × ran ) ∈ V)
9590, 93, 94syl2anc 692 . . . . . . . . . . . . . . . 16 (𝜑 → (dom × ran ) ∈ V)
96 ssexg 4769 . . . . . . . . . . . . . . . 16 (( ⊆ (dom × ran ) ∧ (dom × ran ) ∈ V) → ∈ V)
9787, 95, 96sylancr 694 . . . . . . . . . . . . . . 15 (𝜑 ∈ V)
9897adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑍) → ∈ V)
99 simpr 477 . . . . . . . . . . . . . . 15 ((𝜑𝑤𝑍) → 𝑤𝑍)
10072, 99sseldi 3585 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑍) → 𝑤𝑌)
101 ecelqsg 7754 . . . . . . . . . . . . . 14 (( ∈ V ∧ 𝑤𝑌) → [𝑤] ∈ (𝑌 / ))
10298, 100, 101syl2anc 692 . . . . . . . . . . . . 13 ((𝜑𝑤𝑍) → [𝑤] ∈ (𝑌 / ))
10354, 102eqeltrrd 2699 . . . . . . . . . . . 12 ((𝜑𝑤𝑍) → {𝑤} ∈ (𝑌 / ))
104 snelpwi 4878 . . . . . . . . . . . . 13 (𝑤𝑍 → {𝑤} ∈ 𝒫 𝑍)
105104adantl 482 . . . . . . . . . . . 12 ((𝜑𝑤𝑍) → {𝑤} ∈ 𝒫 𝑍)
106103, 105elind 3781 . . . . . . . . . . 11 ((𝜑𝑤𝑍) → {𝑤} ∈ ((𝑌 / ) ∩ 𝒫 𝑍))
107106ex 450 . . . . . . . . . 10 (𝜑 → (𝑤𝑍 → {𝑤} ∈ ((𝑌 / ) ∩ 𝒫 𝑍)))
108 simpr 477 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → 𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍))
10980, 108sseldi 3585 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → 𝑧 ∈ 𝒫 𝑍)
110109elpwid 4146 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → 𝑧𝑍)
11164, 110eqsstr3d 3624 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → { 𝑧} ⊆ 𝑍)
11266snss 4291 . . . . . . . . . . . 12 ( 𝑧𝑍 ↔ { 𝑧} ⊆ 𝑍)
113111, 112sylibr 224 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → 𝑧𝑍)
114113ex 450 . . . . . . . . . 10 (𝜑 → (𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍) → 𝑧𝑍))
115 sneq 4163 . . . . . . . . . . . . . . 15 (𝑤 = 𝑧 → {𝑤} = { 𝑧})
116115eqeq2d 2631 . . . . . . . . . . . . . 14 (𝑤 = 𝑧 → (𝑧 = {𝑤} ↔ 𝑧 = { 𝑧}))
11764, 116syl5ibrcom 237 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → (𝑤 = 𝑧𝑧 = {𝑤}))
118117adantrl 751 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑤𝑍𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍))) → (𝑤 = 𝑧𝑧 = {𝑤}))
119 unieq 4415 . . . . . . . . . . . . 13 (𝑧 = {𝑤} → 𝑧 = {𝑤})
12049unisn 4422 . . . . . . . . . . . . 13 {𝑤} = 𝑤
121119, 120syl6req 2672 . . . . . . . . . . . 12 (𝑧 = {𝑤} → 𝑤 = 𝑧)
122118, 121impbid1 215 . . . . . . . . . . 11 ((𝜑 ∧ (𝑤𝑍𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍))) → (𝑤 = 𝑧𝑧 = {𝑤}))
123122ex 450 . . . . . . . . . 10 (𝜑 → ((𝑤𝑍𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → (𝑤 = 𝑧𝑧 = {𝑤})))
12479, 84, 107, 114, 123en3d 7943 . . . . . . . . 9 (𝜑𝑍 ≈ ((𝑌 / ) ∩ 𝒫 𝑍))
125 hashen 13082 . . . . . . . . . 10 ((𝑍 ∈ Fin ∧ ((𝑌 / ) ∩ 𝒫 𝑍) ∈ Fin) → ((#‘𝑍) = (#‘((𝑌 / ) ∩ 𝒫 𝑍)) ↔ 𝑍 ≈ ((𝑌 / ) ∩ 𝒫 𝑍)))
12674, 35, 125syl2anc 692 . . . . . . . . 9 (𝜑 → ((#‘𝑍) = (#‘((𝑌 / ) ∩ 𝒫 𝑍)) ↔ 𝑍 ≈ ((𝑌 / ) ∩ 𝒫 𝑍)))
127124, 126mpbird 247 . . . . . . . 8 (𝜑 → (#‘𝑍) = (#‘((𝑌 / ) ∩ 𝒫 𝑍)))
128127oveq1d 6625 . . . . . . 7 (𝜑 → ((#‘𝑍) · 1) = ((#‘((𝑌 / ) ∩ 𝒫 𝑍)) · 1))
12978, 128eqtr3d 2657 . . . . . 6 (𝜑 → (#‘𝑍) = ((#‘((𝑌 / ) ∩ 𝒫 𝑍)) · 1))
13038, 70, 1293eqtr4rd 2666 . . . . 5 (𝜑 → (#‘𝑍) = Σ𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)(#‘𝑧))
131130oveq1d 6625 . . . 4 (𝜑 → ((#‘𝑍) + Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(#‘𝑧)) = (Σ𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)(#‘𝑧) + Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(#‘𝑧)))
13231, 32, 1313eqtr4rd 2666 . . 3 (𝜑 → ((#‘𝑍) + Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(#‘𝑧)) = (#‘𝑌))
133 hashcl 13094 . . . . . 6 (𝑌 ∈ Fin → (#‘𝑌) ∈ ℕ0)
1345, 133syl 17 . . . . 5 (𝜑 → (#‘𝑌) ∈ ℕ0)
135134nn0cnd 11304 . . . 4 (𝜑 → (#‘𝑌) ∈ ℂ)
136 diffi 8143 . . . . . 6 ((𝑌 / ) ∈ Fin → ((𝑌 / ) ∖ 𝒫 𝑍) ∈ Fin)
13723, 136syl 17 . . . . 5 (𝜑 → ((𝑌 / ) ∖ 𝒫 𝑍) ∈ Fin)
138 eldifi 3715 . . . . . 6 (𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍) → 𝑧 ∈ (𝑌 / ))
139138, 30sylan2 491 . . . . 5 ((𝜑𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)) → (#‘𝑧) ∈ ℂ)
140137, 139fsumcl 14404 . . . 4 (𝜑 → Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(#‘𝑧) ∈ ℂ)
141135, 77, 140subaddd 10361 . . 3 (𝜑 → (((#‘𝑌) − (#‘𝑍)) = Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(#‘𝑧) ↔ ((#‘𝑍) + Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(#‘𝑧)) = (#‘𝑌)))
142132, 141mpbird 247 . 2 (𝜑 → ((#‘𝑌) − (#‘𝑍)) = Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(#‘𝑧))
1438, 142breqtrrd 4646 1 (𝜑𝑃 ∥ ((#‘𝑌) − (#‘𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2907  wrex 2908  {crab 2911  Vcvv 3189  cdif 3556  cun 3557  cin 3558  wss 3559  c0 3896  𝒫 cpw 4135  {csn 4153  {cpr 4155   cuni 4407   class class class wbr 4618  {copab 4677   × cxp 5077  dom cdm 5079  ran crn 5080  Rel wrel 5084  cfv 5852  (class class class)co 6610  1𝑜c1o 7505   Er wer 7691  [cec 7692   / cqs 7693  cen 7903  Fincfn 7906  cc 9885  1c1 9888   + caddc 9890   · cmul 9892  cmin 10217  0cn0 11243  #chash 13064  Σcsu 14357  cdvds 14914  Basecbs 15788   GrpAct cga 17650   pGrp cpgp 17874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8489  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-disj 4589  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-omul 7517  df-er 7694  df-ec 7696  df-qs 7700  df-map 7811  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-sup 8299  df-inf 8300  df-oi 8366  df-card 8716  df-acn 8719  df-cda 8941  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-3 11031  df-n0 11244  df-xnn0 11315  df-z 11329  df-uz 11639  df-q 11740  df-rp 11784  df-fz 12276  df-fzo 12414  df-fl 12540  df-mod 12616  df-seq 12749  df-exp 12808  df-fac 13008  df-bc 13037  df-hash 13065  df-cj 13780  df-re 13781  df-im 13782  df-sqrt 13916  df-abs 13917  df-clim 14160  df-sum 14358  df-dvds 14915  df-gcd 15148  df-prm 15317  df-pc 15473  df-ndx 15791  df-slot 15792  df-base 15793  df-sets 15794  df-ress 15795  df-plusg 15882  df-0g 16030  df-mgm 17170  df-sgrp 17212  df-mnd 17223  df-submnd 17264  df-grp 17353  df-minusg 17354  df-sbg 17355  df-mulg 17469  df-subg 17519  df-eqg 17521  df-ga 17651  df-od 17876  df-pgp 17878
This theorem is referenced by:  sylow2blem3  17965  sylow3lem6  17975
  Copyright terms: Public domain W3C validator